

JT Turner Ph.D.

Washington, DC

Curriculum vitae

Research Interests

Deep Learning

Computer Vision

Machine Learning

Sabermetrics

Education

2017-2019 Ph.D. in Computer Science, ​University of Maryland
Baltimore County. ​3.47/4.
Advisor: Dr. Tim Oates

2013-2014 M.S. in Computer Science,​ ​University of Maryland
Baltimore County.​ 3.47/4.
Advisor: Dr. Tim Oates

+Thesis track

2009-2013 B.S. in Computer Science​, ​University of Maryland
Baltimore County. ​GPA: 3.41/4. Major GPA: 3.84
+Dual Major in mathematics

Research Experience

2018-Pres Clarifai, ​Tysons Corner, VA.

2014-2018 Knexus Research Corporation,​ ​National Harbor, MD.
+Context based object detection in images.

+Neural network enhancements for part detection.

+Algorithms research for faster region proposal.

2014 Autonomy Engine, LLC, ​Marriottsville, MD.
+Energy Model Classification of voice tones.

2014 Naval Research Laboratory,​ ​Washington, DC.
+Neural architecture modifications for actions.

2013-2014 CoRaL Lab, ​Baltimore, MD.
+Time series analysis of EEG signals for seizure

 Classification using deep learning

2012 National Institute of Standards and Technology,

Gaithersburg, MD.

+​Video Interpolation of facial recognition and
 Integration with FFMPEG filters.

Teaching Experience

2013 Undergraduate Teaching Assistant, ​CSEE
Department, UMBC.

+Led 2 lab sections of CMSC 201.

2012 Undergraduate Lab Assistant,​ ​CSEE Department,
UMBC.

+ Assisted in lab for CMSC 201 and 202.

2011-2012 Undergraduate Tutor,​ ​CSEE Department, UMBC.
+Tutored CMSC 104 - 314.

2010-2011 Undergraduate Grader, ​CSEE Department, UMBC.
+Graded students projects for CMSC 201 and 202.

Professional Experience

2018 - Present

Clarifai

Senior Research Scientist

Tysons Corner, VA.

2014-2018

Knexus Research Corporation

Research Scientist

National Harbor, MD.

+Writing proposals and consulting on research.

+Development projects as a software engineer.

+Google administrator for company.

2012

UMBC Computer Science/Electrical Engineering Department,

Unix System Administrator

Baltimore, MD.

Daily maintenance tasks and updates to systems.

Development of visual SVN manager for faculty.

Publications

2018 “​Novel Object Discovery using Case-Based Reasoning and
Convolutional Neural Networks”, ​accepted at
ICCBR-2018, 1​st​ author.

2017 “​Using Deep Learning to Automate Feature Modeling in
Learning by Observation”​, ​accepted at FLAIRS-30​, 2​nd

author.

2017 “​Using Deep Learning to Automate Feature Modeling in
Learning by Observation: A preliminary study”​,
accepted at AAAI-SS 2017​, 2​nd ​author.

2016 “SPARCNN: SPAtially Related Convolutional Neural

Networks”, ​accepted at AIPR 2017, 1​st​ author.

2016 “Keypoint Density Region Proposal for fine grained

Object detection using regions with convolutional

Neural network features”, ​accepted at AIPR 2017, 1​st

Author.

2015 “Convolutional Architecture Exploration for Action

Recognition and Image Classification”​, technical note
NCARAI, 1​st ​ author.

2014 “Comparing Raw Data and Feature Extraction for Seizure

Detection with Deep Learning Methods”​, accepted at
FLAIRS-27, 2​nd ​ author.

2014 “Deep belief networks used on high resolution

multichannel electroencephalography data for seizure

detection”​, accepted at AAAI-SS 2014, 1​st ​ author.

2013 “TIME SERIES ANALYSIS USING DEEP FEED FORWARD NEURAL

NETWORKS”​, accepted masters thesis.

Languages

English Native

Spanish Moderate

American Sign Language Moderate

Computer Skills

Advanced: Linux OS, Python, Java, Caffe

Proficient: C, numpy, scipy, Theano

Basic: C++, Perl, Bash, Tensorflow

ABSTRACT

Title of Proposal: VISUAL COMPUTATIONAL CONTEXT:
USING COMPOSITIONS AND NON-TARGET
PIXELS FOR NOVEL CLASS DISCOVERY

JT Turner, Doctoral Candidate, 2019

Proposal guided by: Professor Tim Oates
Department of Computer Science

During the deep learning revolution in computer science that has occoured

since 2006, two factors have pushed our ability to successfully learn from large-scale

data sources: exponential growth in computational power and the size and degree of

annotation of our datasets. Modern models loaded in the Graphics Processing Unit

(GPU) can fill an entire 12 GB Video Random Access Memory (VRAM) graphics

card cache; a training task achievable in weeks that would have taken centuries on

CPUs from 10 years ago [1]. The standard computer vision dataset at the time

- Mixed National Institute of Standards and Technology (MNIST) - consisted of

70, 000 28× 28 pixel grayscale images of 10 class labels. The more recent ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) dataset contains over 15 million

full color images with 1, 000 different class labels. During this time however, there

has been little growth in contextual use in images. Context can be used to identify

target objects that may be obfuscated in the input space as well as confirm or

deny the existence of objects based on underlying parts. I use context in two main

ways to improve object detection and scene understanding. First, I use location

and correlation between objects to infer difficult to see and obfuscated objects [2].

In my second study, I further support the necessity of non-target pixels by using

background pixels of the image to aid in classification instead of only other objects

in the scene. In addition I use case-based reasoning to detect novel objects that

were not seen during training, and classify them with other visually similar objects

based on their observable parts. I use this case-based reasoning model in conjuction

with a CNN to demonstrate the ability to overcome shortcomings of a traditional

deep learned network with case-based reasoning.

VISUAL COMPUTATIONAL CONTEXT:
USING COMPOSITIONS AND NON-TARGET

PIXELS FOR NOVEL CLASS DISCOVERY

by

JT Turner

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County to complete fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Tim Oates, Chair/Advisor
Dr. Michael Floyd
Professor Anupam Joshi
Professor Tinoosh Mohsenin
Dr. Kalyan Moy Gupta

c© Copyright by
JT Turner

2019

Preface

Note from the author: This section has been unedited from it’s original form...the

unfiltered JT if you will. This is what I write like, and my voice. An extra thanks

to my thesis committee for reading 150 pages of this.

The first time I heard about DEEP LEARNING was in the Spring of 2012

in Dr. Oates’ machine learning class. There were some circles and some arrows that

pointed to other circles.

When I started graduate school in May of 2013 I was tasked on a project for

seizure detection, and I started in this crazy field using theano, and an NVIDIA

Quadro K2000M GPU. The first time on this project when I checked the wikipedia

page for Deep Learning, it was a stub. As the summer went on, and the graduate

school semester started, I had become obsessed with the raw power of these algo-

rithms; that I was able to start training, play Starcraft for 2 days, and when the

model had finished training, it would be able to seemingly be able to transform

raw signals into classifications of greater accuracy than SVMs. Normal classes had

taken a back seat to my desire to use deep neural networks. Around this time, my

current boss Matt Zeiler won the top five positions in Imagenet (Image classification

superbowl), and my co-worker David Eigen won the Imagenet localization challenge.

Deep learning was racheting up big, and probably wasn’t a wikipedia stub by this

point.

Images became the new focus in 2014 when I started student contracting at

the Naval Research Lab (the connection which led me to meet the two externals on

ii

the committee, my old boss and a large motivation in this work Kalyan Gupta, and

my old coworker, friend, and Canadian Michael Floyd), and I became the image

processing guy at Knexus Research Corporation. When I left Knexus in 2018 to

work at Clarifai, everybody knew about Deep Learning. There were entire classes at

Universities dedicated to these backpropogating brain benders. While in my masters

thesis I thought that the 3 layer deep stacked restricted boltzmann machines that

I used were deep, these days if you want to do convolution on edge devices you’ll

probably only use a 50 layer deep resnet, instead of the full 200 layers.

It’s been a hell of a ride since I graduated with my masters. I got engaged.

We got a cat. Then we got a dog. The Caps won the stanley cup, and the redskins

were awful. I ate only ice cream for 27 days. In 6 more years when my dissertation

is a mid point in my deep learning studies I can’t imagine what shape the field

will be in. Maybe neural networks will fall out of fashion like they did in the 90’s

for something new; quantum machine learning, or kitten powered support vector

machines. Whatever the future brings, I’m excited to be on the bleeding edge of

research in computer science.

iii

Dedication

Dedicated to a happy rest of my life with Heather Wolf.

iv

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank Knexus Research Corp, in particular Dr.

Kalyan Gupta, and Dr. Michael Floyd. As the first job I had after graduate school,

Knexus exceeded my wildest dreams of what I thought the real world would be like.

A big thanks to Kalyan for countless hours of kicking around ideas creating this

thesis, and to Floyd for countless hours reading quasi-English drafts of papers.

I would also like to thank Dr. Tim Oates for dealing with me on (going on

10 years) since he first had his class rudely interupted by class clown comments in

Introduction to Compilers. Tim has been instrumental in my progress in undergrad-

uate, masters, and now doctorate studies. I would be nowhere near where I am now

without Tim’s help. I think I can bench more than him.

My family has always been supportive of my efforts in school, and out of school

(even when efforts are not worthy of support). I’ve never felt short on love, support,

or someone to argue whether or not a carb/meat combination is a sandwich. This

includes my amazing new family of in-laws who ride motorcycles, paddle rivers,

practice law, found companies, and more!

My friends are people who surely deserve some gratitude. All of my life, I

have relied on the kindness and company of others to get me through life. You guys

are great.

I said this when I got my masters because I figured there would be no way

v

that I would be getting more degrees from the school, but for the last time: SO

LONG, AND THANKS FOR ALL THE FISH!!

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 State of The Art in Computer Vision 2

1.1.1 Hardware and Models . 2
1.1.2 Data . 3

1.2 Context and Novel Object Discovery. 3
1.3 Peer Reviewed Contributions . 5

List of Abbreviations 1

2 Literature Review 8
2.1 Vision History . 9

2.1.1 Ancient History (Pre 2012) . 9
2.1.2 The Neural Revolution (2012 - 2016) 12
2.1.3 Modern Vision (2017 - Present) 14

2.2 Recurrent Neural Networks . 15
2.3 Computational Context . 17
2.4 Case-based Reasoning . 18

3 Deep Neural Networks for Vision 23
3.1 Introduction . 23
3.2 Classification . 24

3.2.1 Forward Pass . 25
3.3 Detection . 30

3.3.1 Keypoint Density Region Proposal (KDRP) 31
3.3.1.1 Region of Interest Pooling 33
3.3.1.2 Keypoint Density Region Proposal Algorithm (KDRP) 38
3.3.1.3 Experimental Results 40
3.3.1.4 Applications of KDRP 46

vii

4 Contextual Visual Signals 47
4.1 Introduction . 47
4.2 Object Correlation (SPARCNN) . 48

4.2.1 Methodology . 50
4.2.2 Experimental Evaluation . 59
4.2.3 Conclusion . 64

4.3 Non-Object Correlation . 65
4.3.1 Introduction . 66
4.3.2 Computational Networks . 69

4.3.2.1 non-target Pixel Orderings 71
4.3.3 Experimental Results . 75

4.3.3.1 Theoretical Results 75
4.3.3.2 Practical Results . 77
4.3.3.3 A Confounding Concluding Experiment 79

4.4 Contextual Power . 80

5 case-basedd Reasoning 82
5.1 Novel Object Detection Algorithm . 83

5.1.1 Introduction . 83
5.1.2 Cased Based Reasoning . 85
5.1.3 Experimental Results . 92

5.1.3.1 Data Set . 92
5.1.3.2 Classification Accuracy 95
5.1.3.3 Novel Class Detection 96
5.1.3.4 Number of Object Types 99

5.1.4 Algorithmic Proof of Concept 101
5.2 Hybrid CNN-CBR Architecture . 103

5.2.1 Introduction . 103
5.2.2 NOD-CC Architecture . 106
5.2.3 Evaluation Standard . 111
5.2.4 Experimental Results . 115

5.2.4.1 Always CNN Variant 115
5.2.4.2 Always CBR Variant 117
5.2.4.3 Conditional CBR Variant 118

5.2.5 CBR applications . 119

6 Conclusion and Future Work 121

A Appendix A: Pascal Parts Dataset Composition 124

Bibliography 129

viii

List of Tables

3.1 Dataset Attributes for UEC-100 and CUB-200 41
3.2 Mean time and detection accuracy of the KDRP and SSRP pipelines 44
3.3 Region proposal computation time as a percentage of total processing

time . 44

4.1 Aspect Ratio Evidence . 57
4.2 Relitive Size Evidence . 59
4.3 PASCAL VOC 2007 characteristics 61
4.4 PASCAL VOC 2007 Evaluation without difficult annotations 63
4.5 PASCAL VOC 2007 Evaluation with difficult annotations 63
4.6 Effects of ordering of regions on accuracy/PR metrics 76
4.7 CNNc̄- Control algorithm. This network was trained to classify on

19 different classes, but is tested on 20. CNNo- This system was a
control network (CNNc̄) that utilized the ordered contextual network
CNNo for detections under a probability threshold of λ = .16. 79

4.8 Contradicting the dissertation in a short table at the end, bold strat-
egy Cotton. 79

5.1 Results of novel object type detection over 25 experimental runs . . . 99
5.2 Performance of the various NOD-CC configurations 116

ix

List of Figures

2.1 Figure from [3]. a) Lawerence Roberts, b) 3-d polyhedrals, c) De-
tected edges from polyhedrals using a gradient based edge detector,
d) Machine representation of the polyhedrals, e) Internal shifted view
of the polyhedrals. 9

2.2 Neocognitron Neural architecture of simple s-cells, and complex c-cells 11
2.3 A diagram showing the direction of the gradient at many pixels eval-

uated in the neighborhood of the SIFT keypoint. The magnitude of
these vectors were given to a histogram of gradients (HOG) to create
a feature descriptor. 11

2.4 Object Classification scores from shallow beginnings in 2011 to resid-
ual networks of high cardinality in 2016. 13

2.5 Visual attention method of [4] . 16
2.6 Sample images from SVHN [5] . 17

3.1 Left- A human representation of the letter S, which we can process
and classify in fractions of a second. Right- A machine representation
of the same pixels, which are difficult to understand to humans and
machines. 24

3.2 Left (A)- Low level features Right (B)- High level features. 25
3.3 The nemesis of linear classifiers. 28
3.4 Feature extractor R-CNNs topology, modeled after the VGG16 archi-

tecture [6], with Regions of Interest (ROIs) and the final convolutional
filters being given as input to the ROI pooling layer. The 13 convolu-
tional layers, pooling layers, and Rectified Linear Unit (ReLU) layers
are combined into one to increase the figures readability. 35

3.5 The three green regions are selected because they are the highest
probability regions in the area that do not overlap at a fraction greater
than α with a higher probability region. The red regions are sup-
pressed because the regions they occupy were already occupied at a
fraction greater than α by a higher probability region 36

x

3.6 Comparison of two hypothesis selection methods, namely (a) top-k
selection, or (b) selecting all detected objects greater than a known
probability threshold. On the top, the system is told to select only
one hypothesis (shown on the left) despite four ground truth objects
being present. On the bottom, it is allowed to detect multiple objects,
and all four ground truth objects are detected. 37

3.7 KDRP example of Max Scherzer batting. Red keypoints are ORB
features, while green keypoints are STAR features. Only 5% of the
regions are shown for increased visibility (a), and color segmentation
used to generate selective search regions is shown in (b). 40

3.8 Effect of proposing fewer regions per image on detection accuracy for
UEC-100 and CUB-200 . 45

4.1 - Spatial Probability Locations . 51
4.2 - Regions generated by SRM information 55
4.3 Two people are visible; one is larger than the cars and one is much

smaller . 58
4.4 The two green objects are not difficult because they are entirely vis-

ible, but the person who we can only see the legs of is considered
difficult. 62

4.5 Classwise comparison of AUC for SPARCNN v. Baseline 65
4.6 Three figures illustrating context, showing (left) a labeled coffee mug

in a natural desk scene, (center) only the context of the coffee mug in
the scene, and (right) only the coffee mug itself, with as much context
as possible removed. 71

4.7 Left- Airplane class showing the uNTP and oNTP regions. Every re-
gion is a member of airplane in uNTP, while oNTP red regions are air-
plane south, cyan is airplane lateral, and magenta is airplane north.
This is shown with β = 6. The α parameter was set too high for
small regions from the east, unlikely to contain information. Right-
aNTP of the pixels surrounding the object. 73

4.8 Left- Accuracy of prediction of censored class fromm CNNa. Right-
Accuracy of prediction of ordered regions of target objects using CNNo. 76

4.9 Accuracy of prediction of censored class fromm CNNa. 80

5.1 Architecture of the NOD-CC image classification system. The classi-
fications are shown in green and are produced by the three decision
algorithms shown in blue. The inputs to the decision algorithms are
shown in yellow, the input image in orange, and the optional parts
detector in red. 106

5.2 The variation in pose of the two cats, as well as the framing of the
picture can drastically effect the observable parts. The cat on the left
in the so-called catloaf position is hiding his legs under his torso, and
the way the picture is framed does not show its tail, while the cat on
the right has all major parts visible. 109

xi

6.1 I’ve been in graduate school for 7 years, and I work in private industry.
Credit to Jorge Cham at www.phdcomics.com. 122

xii

Chapter 1: Introduction

“A computer would deserve to be called intelligent if it could

deceive a human into believing it was human.

–Alan Turing ”Larger visual datasets are imperative to increasing performance in object de-

tection and classification. The growth of computational power through Graphics

Processing Units (GPUs) turns the duration of learning feature representations from

an input of pixel matrices from lifetimes to weeks. There is an additional way to add

information to a classification algorithm that does not replace past improvements,

and does not claim superiority over these algorithms, but instead can be used mod-

ularly to supplement learning, and produce gains in representational knowledge. By

using the same powerfully trained models and features, visual context can be used to

detect more objects, reject background artifacts, and improve our representational

knowledge of the scene.

1

1.1 State of The Art in Computer Vision

Note: This was published in June 2019. This will become obsolete quickly. By

2022 this should sound antiquated, and foreign a few years later.

1.1.1 Hardware and Models

Since 2012 in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[7], Convolutional Neural Networks (CNNs), a Deep Learning approach, have emerged

as a promising technique that dramatically outperforms conventional approaches on

classification accuracy. Evolving from the early work of Lecun [8], who primar-

ily focused on image classification, CNNs can now achieve state-of-the-art perfor-

mance on object detection tasks [9]. Although highly accurate they are still not

suitable for real-time detection and classification applications. For instance, with

Regional Convolutional Neural Networks (R-CNN) and Fast R-CNN [10] the object

detection pipeline takes 2 seconds. With the usage of sophisticated region proposal

techniques [11] [12] object detection can be done in fractions of a second with no

statistically significant loss to detection accuracy. With the introduction of regional

proposal networks into the CNN (Faster R-CNN [13], and masking R-CNN net-

works [14]), detection can be done almost realtime, and pixel level segmentation of

objects can be achieved.

In addition to more computationally taxing and memory intensive CNNs being used

for gains, the deep algorithms themselves have made large strides. Common tech-

niques such as dropout [15] to prevent overfitting, batch normalization (BN) [16]

2

to improve gerneralization, or residual learning [17] can be attached modularly to

existing networks to improve performance on given tasks. We claim that adding

contextual information about parts and objects in an image will acheive similar

gains in performance.

1.1.2 Data

Datasets have also increased in size since the boom of Deep Learning. Some of

the datasets such as the Scene Understanding (SUN) dataset [18] or the ImageNet

classification dataset [7] have over 1,000 object categories, while datasets such as

the Microsoft Common Objects in Context (MS COCO) [19] and PASCAL Visual

Object Challenge (VOC) [20] have over 1,000 instances for every target category.

The 3 leveled hierarchy of the SUN dataset provides extra knowledge about the

image that we are seeing, similarly to how the CUB-200 [21] or the subset of VOC

Pascal Parts Dataset [22] give us information about the location and presence of

parts inside the bounding boxes for a better knowledge representation of the objects

comprising the greater scene.

1.2 Context and Novel Object Discovery.

Images are represented in computers as a 3-dimensional tensor or matrix of

pixels representing the images height, width, and channel depth. Pixel matrix im-

ages contain a vast amount of raw data which is transformed into features, objects,

scene descriptions, etc by CNNs. By learning on the features provided to us from

3

deep CNNs, we are able to learn features of the features themselves, and identify

and recognize objects that would not have been detected had we only used the raw

signal input. This type of learned features of features schema will move us closer

to a human type vision system, where we are able to reason about and compare

what we think we see with what we know we see. The ability to know that an

obscured object on a table is much more likely a bottle than a flute because of the

surrounding objects and features is a valuable type of knowledge representation to

have. Furthermore, the usage of parts in objects will allow us to not only raise or

lower our confidence in visual object detections, but it will also allow us to infer

new types of objects from the parts that we see, or be able to better estimate the

actions of objects detected. Imagine a system that has been trained on a variety

of brass instruments: a trumpet, a tuba, and a sousaphone. Upon encountering an

image containing a trombone, the system would be able to deduce from the lack of

finger valves present in the other brass instruments that this is not one of the three

it has seen previously. It would know however, that this instrument’s coloration,

long tubes, mouthpiece, and flared horn is much more similar to a brass instrument

than it is a type of animal, so ideally it would be able to label the trombone as a

new trumpet-tuba relative, instead of incorrectly assigning to an existing class.

Parts can also tell us the action that the object itself is taking. Imagine an image

of a man asleep on a bed with a cat next to him licking it’s paws clean. The config-

urations of the the body parts of the man’s head, legs, torso, and arms may allow

us to label this man as a sleeping man. Furthermore, the cat’s configuration could

tell us this is a grooming cat. This would be very different from a picture of a cat

4

sprinting across the room, as they are known to do, and a man standing in front of

the stove stirring a stew. The fine-grained classifications here would be a running

cat and a standing man.

1.3 Peer Reviewed Contributions

The remainder of this thesis is organized as follows: Chapter 2 is prior work

and related work to the topic of contextual computation in images, as well as a brief

history of computer vision, as well as a discussion on object relationships with neural

networks, case-based reasoning, and few shot learning. Chapter 3 is an extensive re-

view of Deep Neural Networks and their usage in computer vision. When discussing

the region proposal and object detection component of CNNs, a large portion of my

work Keypoint density-based region proposal for fine-grained object detection using

regions with convolutional neural network features published at the 2016 Institute

of Electrical and Electronic Engineers (IEEE) Applied Imagery Pattern Recognition

(AIPR) Workshop will be referenced. Chapter 4 will discuss the usage of pixels

that are not the object we are currently trying to classify to assist our classification.

In doing this we will reference two of my previous works, SPARCNN: Spatially re-

lated convolutional neural networks published at the 2016 IEEE AIPR Workshop,

and Unknown Target Classification: A Contextual Classifier Study, submitted for

publication at 2019 British Machine Vision Conference (BMVC). Chapter 5 will

introduce case-based Reasoning for Novel Object Classification. This chapter will

reference my theoretical paper Novel Object Discovery using Case-Based Reason-

5

ing and Convolutional Neural Networks published at the International Conference

on case-based Reasoning (ICCBR) 2018, and the practical application of my paper

NOD-CC: A Hybrid CBR-CNN Architecture for Novel Object Discovery, accepted

for publication and an oral talk at ICCBR 2019. Chapter 6 will be closing remarks

on computational context, and its usage in computer vision, and what will hopefully

be future works from myself and other scientists.

The contributions of this thesis to the field of Deep Learning and computer

vision are the following:

• A method of region proposal that is demonstrably faster that existing region

proposal techniques [23] without a loss in accuracy.

• A method of spatial and size-based object relation in images with multiple

objects that were shown to boost recall and overall accuracy in multiple ex-

periments.

• Experimentation on using non-target pixels in an image to infer classes with-

eld during training time, and provided evidence supporting the necessity or

ordering non-target pixels in aiding classification.

• An algorithm created to discover and classify novel objects given feature em-

bedding similarity and part similarity to other objects using case-based rea-

soning

• The novel object algorithm described above in conjunction with CNNs to

guide decisions to create novel classes beyond what was only achievable with

6

case-based reasoning.

7

Chapter 2: Literature Review

“Everyone points at a picture of a goat sitting in a grassy field

and says Look at the goat sitting in the grassy field. Nobody

cares about goats in grassy fields, that is not interesting.

–Kalyan Gupta, 2015. ”Here in Chapter 2, I provide context for the work done in this dissertation,

and where it sits in the wide field of computer vision and case-based Reasoning

(a technique used heavily in Chapter 5 to overcome shortcomings of CNN only

techniques). In Section 2.1, I give a general history of the field of computer vision

from it’s inception in the 1960’s to the neural networks of today. In Section 2.2,

I discuss Recurrent Neural Networks which are another form of using spatial or

temporal context for performance gains. In Section 2.3, I discuss existing work done

in the field of Computational Context, and in Section 2.4, I provide an overview of

CBR and its usages with respect to our purposes of novel object detection.

8

Figure 2.1: Figure from [3]. a) Lawerence Roberts, b) 3-d polyhedrals, c) De-

tected edges from polyhedrals using a gradient based edge detector, d) Machine

representation of the polyhedrals, e) Internal shifted view of the polyhedrals.

2.1 Vision History

In the following sections, I give a little bit of insight on where the field of

Computer Vision was, what started the Neural Network revolution, and lastly say

where the field is now. I also dispel an infamous Computer Vision urban legend.

2.1.1 Ancient History (Pre 2012)

Computer vision became a topic of interest in the world shortly after com-

puters did, with primitive solutions at first. In 1963, Lawerence Roberts published

Machine Perception of Three Dimensional Solids [3], in which a system recognized

3 dimensional polyhedrals using 2× 2 gradient operators over the image, and then

reconstructed these to be viewed from different angles as shown in Figure 2.1.

9

While the geometric views had the advantage of using powerful edge detectors

using the image gradient, the algorithms required a known shape of the object being

detected which was not scalable to real world vision problems.

Three years later in 1966, it was said that Marvin Minsky told a summer

student to solve the computer vision problem. As endearing and fun as this tale

is, it was unfortunately not true, as Seymour Papert’s original proposal paper [24]

shows their task was different. The believed quote from Minksy was telling the

students to do something interesting with a camera and a computer.

In the following few decades, there were other uses of gradient edge detectors

and geometric recognition of objects [25] [26] [27] [28], which all struggled, as well, to

recognize object categories, or objects with variation in shape or edge composition.

Not to be lost in the 80’s was the work of Fukushima developing Neocognitron [29],

an artificial neural network in the geometric era of vision. Neocognitron used two

different types of neurons, s-cells or simple cells, and c-cells or complex cells to

learn letters and numbers on handwritten checks. The s-cells were responsible for

edge and corner detection of the writing of the characters, while the c-cells learned

features of the output of the simple features extracted as seen in Figure 2.2.

The 90’s brought a proposed solution to the problem of object variability and

rigidity of before by using appearance Based Models. These models used global

image features such as color indexing [30], eigen vector and fisher vector linear

projections [31], or appearance manifold clustering [32] to get more robust views

of objects to classify them. Although these appearance based models were much

more robust than the geometric constructions of decades before, they still struggled

10

Figure 2.2: Neocognitron Neural architecture of simple s-cells, and complex c-cells

Figure 2.3: A diagram showing the direction of the gradient at many pixels evaluated

in the neighborhood of the SIFT keypoint. The magnitude of these vectors were

given to a histogram of gradients (HOG) to create a feature descriptor.

with object occlusion, variations, deformations, or situations where a global pattern

could not be registered in the image.

At the end of the 90’s leading into 2000, local image patterns and keypoint

descriptive methods began dominating the computer vision world. In a computer

vision paper with over 50, 000 citations at the publication of this work (mid 2019),

David Lowe published Distinctive image features from scale-invariant keypoints [33],

where he created feature vectors using histograms of gradients (HOG) taken at

points in the image with large gradient shifts (Figure 2.3).

These features were distinctive, and could be used to match exemplars of a

11

prototype object to new instances of the object. Moreso, these HOG feature vectors

were scale invariant vectors, and could easily be fed to a support vector machine for

robust classification. The winning entry to the Imagenet Competition in 2011 used

a gaussian mixture model to build a vocabulary learned on low level SIFT image

features [7]. 2011 was the last year that the Imagenet challenge has been won by

something other than a neural network.

2.1.2 The Neural Revolution (2012 - 2016)

While the recent advances in utilization of SIFT keypoints and feature de-

scriptors led to impressive performances on the Imagenet classification challenges

(in 2011 XRCE got a classification error of 25.81%), they were nothing compared

to the wave of neural networks about to take the world by storm. The results from

2011 to 2016 (the challenge was fundamentally changed to be more focused on video

classification in its final year 2017, so classification results are not given) are shown

in Figure 2.4.

We will briefly discuss the architectural significance of each of the networks

from 2012 to 2015.

• 2012 Alexnet- Alex Krizhevsky’s Alexnet [34] in 2012 was the first deep neural

network, using convolutional filter layers, max pooling, and GPUs (for the

first time in the Imagenet challenge) to reduce the classification error by 9.39

percentage points.

• 2013 ZF Net- Matt Zeiler’s 2013 ZFnet [35] introduced a deconvolutional

12

Figure 2.4: Object Classification scores from shallow beginnings in 2011 to residual

networks of high cardinality in 2016.

layer to the network in order to better visualize the filters and activations

from the network being learned. Using this method, Zeiler was able to slightly

modify the hyper parameters of Alexnet to reduce the classification error by

4.68 percentage points.

• 2014 GoogLeNet- In 2014, Szegedy, GoogLeNet [36] (also known as incep-

tion net) won the Imagenet challenge with far less parameters then seen before

by the introduction of inception modules. By using filters of different sizes,

and dimensional changing via 1×1 convolutional layers, inception was able to

reduce classification error by 5.08 percentage points.

• 2015 Residual Network (Resnet)- Up through 2014 the deepest neural net-

works were VGGNet [6] at 19 layers, and Inception [36] at 22 layers. Resnet [36]

was 152 layers deep, and able to alleviate the vanishing gradient problem by

using skip connections. Resnet was able to reduce classification error by 3.1

13

percentage points.

• 2016 Residual NeXtworks- After Resnet had gone into triple digit layers

it became difficult to go deeper, so resneXt [37] went wider. By splitting the

channels into different groupings (instead of adding more layers), the same

computational power is able to be achieved with fewer parameters, so they were

able to add more discriminatory power with the same amount of memory. By

doing this, they were able to reduce the classification error by .53 percentage

points.

In 2017, the contest was more focused on video than image classification. The

Imagenet challenge has not been run since, as classification and localisation boosts

showed diminishing returns.

2.1.3 Modern Vision (2017 - Present)

Deep Learning changes since the end of imagenet have not been as significant as

the changes in the 5 years since Alexnet. The algorithms have been applied to more

domains and videos, and the data being collected in the public and private sectors is

increasing. Since 2015, deep learning algorithms have surpassed human performance

on the classification and localization tasks [36], and it’s becoming nearly impossible

to gain more information from the target object signals. Although there are consis-

tently new algorithmic improvements in detection, classification, and video analysis,

it is impossible to get the performance boosts seen in 2012 of 9.39 percentage points

(since current error rates are less than 3%).

14

2.2 Recurrent Neural Networks

The primary method for attention-based visual models and scanning images

in the literature is Recurrent Neural Network’s (RNNs). The most common RNN

used is Long Short-Term Memory (LSTM) [38]. At time step t, the LSTM recieves

a hidden cell state ct−1, and an input signal mt−1 to produce an output signal

ht. Three gates are used; a forget gate ft, input gate it, and output gate ot, with

parameter matrices Wg and Ug given signal g, and parameter vector bg given g such

that (with σ being the nonsaturating linearity of implementers choice):

ft = σ
(
Wfxt + Ufht−1 + bf

)
it = σ

(
Wixt + Uiht−1 + bi

)
ot = σ

(
Woxo + Uoht−1 + bo

)
ct = ft ◦ ct−1 + it ◦ σ

(
Wcxt + Ucht−1 + bc

)
ht = ot ◦ σ(ct)

LSTMs have more power to regulate how much and which parts of their previous

inputs they remember, and the ability to forget them once a new input renders the

old memory obsolete. [38]. In [4], two different LSTMs are used to guide object

detection; the emission network E, and the glimpse network G. The role of the

emission network is to provide coordinate information for what region of the image

to process next given what it has seen previously, and what it is currently seeing.

The purpose of the glimpse network is to use a powerful convolutional network on

a region of the image to classify what object (if any) is present.

15

Figure 2.5: Visual attention method of [4]

Init

Classification
Network

Emission
Network {

Glimpse
Network {

Time t - 3 t - 2 t - 1 t

Because RNNs need some initialization, the initial feature vector Ifv is created

by processing a downsampled version of the initial image I. The first emission

network E0 produces output coordinates c1 by using Ifv as input. The following

emission networks En take as input the output of En−1, and the output of Gn,

where Gn is the nth glimpse network. The nth glimpse network is the feature vector

created by convolution of the cthn region of I. The network is shown in Figure 2.5.

The recurrent nature of the model allows some contextual information to be

used in both deciding where to look next, and what to expect next. This technique

is helpful in datasets such as Street View House Numbers (SVHN) [5] (Figure 2.6)

where a single forward pass is sufficient and object sizes are generally fixed, but

would struggle in a large search environment where target objects are not neatly

aligned.

16

Figure 2.6: Sample images from SVHN [5]

2.3 Computational Context

The use of context in images is a field that has not garnered more than a small

fraction of the research in the area. Bell et al. [39] use recurrent neural networks on

multiple scales to scan the feature maps of the image for inter-object relationships

to make further predictions on these relationships. This work leverages IRNNs [40]

which are identity matrix initialized Rectified Linear Unit (ReLU) recurrent tran-

sitions on the feature mapped output space of a Fast-RCNN [10]. Although these

were successful in raising the mAP of complex object detection systems, this sys-

tem used target pixels from other objects in the scene (such that it would gain no

advantage in a single target image), and used the stored feature map output from

the network, so is not end-to-end trainable.

A different work using context for gains in detection accuracy is that of Turner

17

et al. [2], where a VGG16 feature extractor [6] was used in conjunction with a Fast-

RCNN detection net to compute object correlation probabilities in training, and to

apply these known relations to modify the probability of detection at inference time

for increased accuracy. In removing biases from the model added by using training

data, the work builds correlative probability modifiers using a bias reducing region

proposal technique [41]. Although increasing accuracy and average precision on

the VOC2012 dataset, this technique did not leverage Non Target Pixels (NTP)s

explicitly, and requires a large annotated dataset to generate the necessary object

correlation matrices for detection.

Another interesting approach using recurrent neural networks in the field is

that of Minh et al. at Deep Mind [42] on attention based networks. This work

uses a separate recurrent neural network called a Glimpse Network together with

a Glimpse Sensor to sample an image patch or chip at multiple scales in order to

guide the network. Although this does focus on NTPs similar to our work, it is

using the recurrent model to shift the attention of the network to new locations to

complete part of a larger image, such as discovering the full sequence of numbers on

the Street View House Numbers (SVHN) or MNIST dataset.

2.4 Case-based Reasoning

Integrations of Deep Learning and CBR have seen increased interest recently,

with many researchers exploring how the two approaches can benefit each other.

In the domain of Human Activity Recognition (HAR), CNNs have been used for

18

feature extraction [43]. This work differs from our work in that it uses accelerometer

data rather than image data, but similarly finds that reasonable results can be

achieved with instance-based algorithms when features are automatically learned

and extracted using CNNs. Instance-based retrieval in the HAR domain has also

been used to find similar existing data that can be used to train a classifier for a

new user [44]. Their system also uses CNN-extracted features and, like our work,

is motivated to allow learning under limited data availability. However, their work

is focused on classifier personalization rather that novel class identification (e.g.,

they do not detect new types of activities that have not been seen before). They

have also examined how Siamese Neural Networks can be used to learn similarity

functions [44], and such an approach could potentially be used in our algorithm to

improve retrieval. Deep Learning has been combined with CBR to generate novel

recipes that are both surprising and plausible [45]. However, this differs from our

own work in that their system creates novel items rather than discovering previously

unknown items.

Case-based reasoning has been used for a variety of image processing and

computer vision tasks [46]. One application area that has seen particular interest is

medical CBR (e.g., [47] [48] [49]), primarily due to the prevalence of medical imagery

in patient files and the need to retrieve similar images to aid in diagnosis. However,

unlike our work, the majority of CBR approaches rely on hand-crafted features

rather than learned features (e.g., [50] [51] [52]). Additionally, while CBR systems

are often used for image retrieval and classification, to the best of our knowledge

none are able to detect novel object types (or, more generally, novel classes in non-

19

image systems). Some systems may be able to perform outlier detection (e.g., when

no similar cases are retrieved) but do not attempt to learn novel object types from

these outliers. For example, rather than attempt to generate a novel object label, a

CBR system may present an input image to a domain expert for manual labelling.

Although having human annotations is valuable, it is not always practical when a

system is operating autonomously for long periods of time.

The most similar work to our own involves classifying webpages based on

multimedia data (e.g., images) rather than only the contained text [52]. Like our

approach, they use CNNs to perform feature extraction from images and use those

features during case retrieval. The primary difference between their work and our

own is that they only classify images into predefined classes, so no novel object

discovery is performed. They do perform outlier detection, but that is to identify

mislabeled or irrelevant images contained in a webpage rather than to detect novel

webpage themes; outliers influence the case structure but do not modify the set of

class labels.

As we mentioned previously, existing approaches to Computer Vision tend to

focus on object classification (e.g., CNNs [34]) or detecting regions containing objects

(e.g., R-CNNs [9] [10] [13]). These approaches rely on a predefined set of object

types, with fewer works examining novel object discovery. Existing approaches for

unsupervised object class discovery are similar to our own work in that they learn

from images containing a single object type per image [53] [54] [55]. However, as we

mentioned previously, the images we use in this work often contain multiple objects

in each image but with only one of the objects labelled by human annotators. The

20

primary difference between these approaches and our work is that they perform

offline object detection using the entire dataset. Our approach is both online and

incremental; novel object types are detected at run-time based on the content of

input images. To the best of our knowledge, no other approaches exist to allow

online and incremental unsupervised object discovery. As we discussed previously,

existing computer vision systems can only identify that an input image is unlikely

to be of a known object type. They do not provide online labels for these unknown

objects or learn from them (i.e., how to classify future images of that object type).

However, our approach can perform such labelling and learning, and can learn after

retaining only a single case.

Our algorithm learns in an unsupervised manner when no expert-annotated

training cases are provided to it (e.g., as in our evaluation that starts with an empty

case-base). As such, it has many similarities to clustering since it is grouping input

images by assigning them generated class labels. Many traditional clustering algo-

rithms, like K-means [56], divide data into a fixed number of partitions, whereas our

approach dynamically creates new object types as necessary. Hierarchal clustering

methods, like single-linkage [57], are able to dynamically increase the number of

clusters created but do not cluster incrementally; the entire dataset must be pro-

vided as a batch. Incremental clustering algorithms have been developed, such as

incremental k-means [56], that allow data points to be added sequentially rather

than as a batch. However, even incremental clustering algorithms rely on compar-

ing each data point to a set of cluster centroids. Our approach compares data points

(i.e., input images) to any existing case in the case-base. This is important given

21

the two-stage retrieval process we use. Since retrieval is based on both an images

feature vector representation and its observable parts, there can be a high degree of

variability amongst cases of the same object type. For example, since the similarity

thresholds used by our algorithm may be relatively low, cases of the same object

type may not have highly similar feature vector representations (i.e., a medium fea-

ture vector similarity but high parts similarity). Similarly, cases of the same object

type may have high feature vector similarity but only medium parts similarity. If

only cases representing class centroids were retrieved, an input image could appear

dissimilar to all of the centroids (i.e., treated as a novel object type) but would have

been similar to one or more of the noncentroid cases. Additionally, unlike clustering

algorithms, our algorithm can be used for both classification and novel class dis-

covery. Without any labeled data, it performs classification based on its generated

object type labels. However, if some cases are provided using labeled training data

(i.e., some supervised learning was performed) the algorithm can either generate

novel class labels or perform classification based on existing object type labels.

22

Chapter 3: Deep Neural Networks for Vision

“Marvin Minksy published a book called Perceptrons where he

explained the problem with people stacking super deep linear

networks. The book could have been called You’re all idiots.

–Tim Oates, 2012. ”
3.1 Introduction

All of the work that I present uses deep neural networks as the feature extractor

for classification. Although the work I present does different things with these clas-

sified outputs or feature vectors used for making such an output, the featurization is

always the same. In the remainder of this chapter, I define the problem of classifica-

tion in Section 3.2, discussing the forward pass of the network in Section 3.2.1 used

to produce the feature outputs from the network. I set up the detection problem in

Section 3.3, and show original work done to speed up the detection pipeline given

precomputed regions in Section 3.3.1.

23

Figure 3.1: Left- A human representation of the letter S, which we can process

and classify in fractions of a second. Right- A machine representation of the same

pixels, which are difficult to understand to humans and machines.

3.2 Classification

The classification problem for CNNs is as follows: given an image I with

an associated class label c, find a function f such that f(I) → c. Although this

may seem easy to a human with our understanding of shapes, edges, parts, and

compositions, consider the simple image with the corresponding greyscale matrix

seen in Figure 3.1.

Although new networks, algorithms, layer variations, and combinations are

released daily1, we will focus our energies in understanding the forward and back-

wards pass on the following basic layers: Convolutional, Max Pooling, Saturating

Non-Linear (we will use ReLU [40]), and fully connected.

1Literally daily. During the week of April 22 - 26 in 2019 during the writing of this section

there were 222 computer vision papers published on arxiv.

24

Figure 3.2: Left (A)- Low level features Right (B)- High level features.

3.2.1 Forward Pass

In the forward pass of the CNN, the raw pixels are transformed into a class

label that can be interpreted more easily by a human or a machine. In Figure 3.1

the desired class label output would be ’S’.

Convolutional Layers- Convolutional layers are the most important layers in a

Convolutional Neural Network. These layers perform matrix multiplications over

the input space of the image to extract features. In the earlier layers of the network,

the convolutional neurons produce a strong activation to stimuli such as edges or

curves, as seen in Figure 3.2 A. As later levels of the network perform convolutional

operations on these features, complex shapes and patterns are seen exemplified in

Figure 3.2 (B). These high-level features are more helpful to the final classification

by the machine.

Given an image I and a convolutional filter of size m × n denoted Cm×n, we

produce an output feature map O as follows2:

2For simplicity’s sake, we assume a single channel greyscale input image, and a single channel

25

Oij =
m∑
i=0

n∑
j=0

IijWij

making the back-propagation map of size m× n:

δCm×n = {δWij∀i ∈ [0,m]andj ∈ [0, n]}

where

δWij =
m∑
i=0

n∑
j=0

Iijδhij

where δhij is the error signal from the layer above. In a lower layer δWij would

become δhij.

Max Pooling Layers- Max pooling layers are mapped over the input space with

the aim of removing unnecessary output from the model. We do this for two rea-

sons: (1) Max pooling layers reduce the number of parameters in later layers of

the network. (2) Max pooling eliminates distractors from the signal (if we have 8

neurons saying this is a maine coon cat with high certainty, we can ignore the one

that says it is a tugboat with a low probability). Pixels of the output map O are

generated from the feature layer Fm×n from max pooling layer Mq×r as follows:

Oi,j =


Fi,j Fi,j ≥ Fl,k∀l ∈ [0, q]andk ∈ [0, r]

0 else

Back-propagation of max pooling layers is somewhat simple because there is no error

gradient in the non maximum activations. With output vector O, weight matrix W ,

feature map. Non single channel images are tensor multiplications in 3 dimensions.

26

and input feature map F , back-propogation is defined as follows:

Oi = f(
∑
j

WijFj)

By the chain rule,

∆(Fj) =
∑
i

∆Oif
′Wij

However, since our function f is the max pooling function, the derivative is equal

to the derivative of the identity function (f ′ = 1) on the maximum neuron output,

and no derivative elsewhere, giving

∆F =


∑

i ∆FiWi Max Neuron

0 else

Rectified Linear Units (ReLU)- The ReLU layer has seen great use in recent

years for the saturating non-linearity function used in a variety of deep neural net-

works [40]. Saturating nonlinearities serve the purpose of giving additional expres-

sive power to the neural networks that are not obtainable in simple linear networks.

A famous example of what linear networks are incapable of doing is the exclusive

or (XOR) problem shown in Figure 3.3. Try as you may, a linear decision boundary

cannot be drawn separating positive and negative classes in this space.

ReLU is a simple non-linear function that is easy to compute, easy to un-

derstand, and shows greater performance over traditional non-linearities [58]. The

function is defined as:

ReLU =


x x ≥ 0

0 x < 0

27

Figure 3.3: The nemesis of linear classifiers.

As any Calculus I student will tell you, the derivative is undefined at x = 0! While

technically correct, this is unimportant, as this is a usage for the theory of sub-

gradients [59]. It has been shown in literature (I won’t cite my entire bibliography

here, but pick any paper that uses ReLU) to still facilitate faster, more robust learn-

ing. Any arbitrary value between 0 and 1 (inclusive) will do. The backpropogation

is given as:

d

dx
ReLU =


1 x ≥ 0

0 x < 0

Fully Connected Layers- Fully connected layers often exist outside the scope

of CNNs as powerful feature extractors, or dimensionality modifiers. While naively

stacked fully connected layers with only linearities do not add information to net-

works [60], stacked, normalizing, properly trained deep neural networks can provide

great boosts over non-deep solutions [1]3.

3Fully connected deep networks were the topic of my masters thesis in the context of seizure

detection in 2014. For a more detailed explanation, please reference [61].

28

Given an input layer I (an m × 1) vector, a hidden layer (which is a weight

matrix Wm×n and a bias vector b of size n × 1), we compute the Output layer O

(n× 1) as follows:

Oj = σ((
m∑
i

WijIi) + bj)

where σ is a nonlinear function like ReLU. For the backwards pass, given a loss L

at output layer Z,

δL

δyZi
=

d

dyZi
L(yZ),

we can compute the partial derivatives of the neurons with respect to the neuron

input (x) at layer k.

δL

δxkj
= σ′(xkj)

δL

δykj
,

giving us the errors at the previous layer

δL

δyki
=
∑

wk
ij

δL

δxk+1
j

. (3.1)

Finally, using Equation 3.1 we can calculate the gradient of the error with respect

to the weights for update as follows:

δL

δwk
ij

= yki
δL

δwk+1
j

The four layers listed above are a non-exhaustive list of layers used in modern

neural networks, however they are meant as a sampling of the different types of

layers used. Not included was a normalizing layer such as batch normalization [16]

or dropout [15]. These layers reduce internal covariate shift of networks and reduce

overfitting by jittering or adding noise to the data distribution similar to restricted

boltzmann machines [62] or denoising autoencoders [63].

29

Using variations of these layers in known neural network architectures we are

able to train the network to classify images. For some of the experiments, instead of

using the softmax probability from the final layer of the neural network, we instead

use the feature activation in one of the penultimate layers of the network as input

to a CBR algorithm. The reasoning for this was will become clear in Chapter 5

(but briefly because the Case-Based Reasoning algorithm was not trained on any of

the classes, restricting the feature vector power to an arbitrary number didn’t make

sense).

3.3 Detection

If classification (Section 3.2) can be thought of answering the question what

is in the image, detection answers the question where is it in the image4. We have

seen the framework for feature extraction and classification above, and detection is

not that different as seen in Section 3.3.1. Before the convolutional feature maps are

flattened to produce fully connected layers for classification, these high level feature

maps (which are generally a much downsampled version of the original input) contain

information about the relative location of objects in the image. Given these feature

maps, and the groundtruth location of objects pixel locations in the image, we

can train regression algorithms to detect and classify objects in the feature space.

We’ll explore how in Section 3.3.1, a published paper supported by the Office of

Naval Research about speeding up the detection pipeline of CNNs in the maritime

4Technically it answers what and where simultaneously.

30

domain [41].

3.3.1 Keypoint Density Region Proposal (KDRP)

Note: Section 3.3.1 is mostly the published work of Turner et. al in 2016 AIPR

in the paper Keypoint density-based region proposal for fine- grained ob-

ject detection using regions with convolutional neural network features.

This work was supported by the Office of Naval Research.

Although recent advances in regional Convolutional Neural Networks (rCNNs)

enable them to outperform conventional techniques on standard object detection and

classification tasks, their response time is still slow for real-time performance. To

address this issue, we developed a method for region proposal as an alternative to

selective search, which is used in current state-of-the art object detection algorithms.

We evaluate our Keypoint Density-based Region Proposal (KDRP) approach and

show that it speeds up detection and classification on fine-grained tasks by 100%

versus the existing selective search region proposal technique without compromising

classification accuracy. KDRP makes the application of CNNs to realtime detection

and classification practical.

Applications of image processing algorithms to Navy missions such as those

involving intelligence surveillance and reconnaissance (ISR), maritime security, and

force protection (FPr) require that they achieve high accuracy and respond in real

time. Conventional approaches to image classification tasks include the use of key-

point descriptors and local feature descriptors [33], which are binned into histograms

31

and compared to other keypoints to match similarly featurized objects. For instance,

the work of Felzenszwalb [64] on deformable part models and detection of parts gave

rise to specialized part models that operate by transfer of likely locations [65], which

achieved high classification and detection accuracy and speed on the fine-grained

Caltech UCSD bird dataset [66]. Recently, Convolutional Neural Networks (CNNs),

a deep learning approach, has emerged as a promising technique that dramatically

outperforms conventional approaches on classification accuracy. Evolving from the

early work of Lecun [8], who primarily focused on image classification, CNNs can

now achieve state-of-the-art performance on object detection tasks [9]. Although

highly accurate they are still not suitable for real-time detection and classification

applications. For instance, with R-CNN and Fast R-CNN [64] the object detection

pipeline takes 2 seconds.

Our goal in this section is twofold. First, we develop approaches to speed

up R-CNNs so that they perform at sub-second levels, and second, we examine

the effectiveness of our approach on fine-grained detection and classification tasks.

Fine-grained classification tasks focus on visually similar but semantically different

categories and present substantially larger interclass ambiguities, which complicate

detection and classification problems. Therefore, we propose a new technique, called

Keypoint Density-based Region Proposal (KDRP), to include as an integral element

of the R-CNN detection and classification pipeline. The existing evaluations and

applications of R-CNN have focused on standard coarse (rather than fine-grained)

detection and classification tasks (e.g., PASCAL VOC 2007/2012).

However, naval applications often require fine-grained detection and classifi-

32

cation [67]. Therefore, we evaluate KDRP on representative fine-grained data sets,

namely UEC-100 food and CUB200 birds. We found that KDRP provides a 100%

speedup over Fast R-CNN without compromising detection and classification accu-

racy.

We structure the remainder of this section as follows: We provide background

on the Fast R-CNN detection pipeline in Section 3.3.1.1. In Section 3.3.1.2, we

describe our KDRP algorithm, which replaces step 2 in the Fast R-CNN detection

classification pipeline. Section 3.3.1.3 describes our experiments, along with the

time and accuracy results. We discuss these further in Section 3.3.1.4 and then

conclude with future work plans.

3.3.1.1 Region of Interest Pooling

Here we describe the processing pipeline of Fast R-CNN [10], which we modify

to reduce image processing response time. It includes the following steps:

1. Region Proposal (via KDRP)

2. Feature Extraction (via a trained network)

3. Non-Maximum Suppression

4. Hypothesis Selection.

Our proposed KDRP algorithm (Section 3.3.1.2) replaces the state-of-the-art

algorithm (selective search) in Step 1. We describe all four steps in the following

paragraphs.

33

Region Proposal The purpose of region proposal is to generate enough regions

such that there is a high probability that one of the regions r in the set of all

regions proposed R will be an accurate region that bounds the ground truth object.

Assuming we are given an image I with dimensions w×h, a region is a subset r ⊂ I,

with dimensions w′ × h′ , where 0 < w′ ≤ w, and 0 < h′ ≤ h. The state-of-the-art

approach for region proposal is selective search [23], which is an image segmentation

method that uses multiple image scales and eight opponent color-spaces (consisting

of one luminance channel and two color spaces stimulated by opponent cones in the

retina) to generate regions that may contain target objects (in a true object detection

task there can be any number from 0 to n objects detectable in the image). This

is a time-intensive approach because it creates several thousand regions to increase

the likelihood that at least one proposed region contains the ground truth object

(to enable detection). As we explain later, because KDRP never infers bounding

boxes and cannot modify the boundaries of a bounding box, the region that contains

the object must be generated or detection will fail. The implementation of Fast R-

CNN [10] uses selective search for region proposal. This is a shortcoming of the Fast

R-CNN method, not one of KDRP.

Feature Extraction After region proposal a trained CNN generates features us-

ing image convolution, activation functions, and pooling. For a classification model

trained on n classes, the output from the classification layer comprises n+1 probabil-

ities. For the bounding box coordinates of these classes, there are 4n+4 coordinates.

The reason for adding one to the number of classes is that it allows a background

34

Figure 3.4: Feature extractor R-CNNs topology, modeled after the VGG16 archi-

tecture [6], with Regions of Interest (ROIs) and the final convolutional filters being

given as input to the ROI pooling layer. The 13 convolutional layers, pooling lay-

ers, and Rectified Linear Unit (ReLU) layers are combined into one to increase the

figures readability.

class. Each of the regions classification is the softmax of the n+ 1 probabilities, and

each class corresponds to a 4-tuple of coordinates. The computationally expensive

convolutional phase needs to only occur once; in this implementation the Regions of

Interest (ROIs) that are detected are passed through the network at the same time

as the image itself, and translated to the ROI pooling coordinates. After the ROI

pooling layer has been computed, the only computations that need to be repeated

multiple times are the multiplications between the fully connected layers, and dense

matrix multiplications have been optimized to be extremely fast on GPUs. The

network topology is shown in Figure 3.4.

Non-maxima Suppression Non-Maxima Suppression (NMS) is a technique for

images containing an unknown number of objects. It combines likely detections of

the same class together into one object if the detections overlap enough. NMS is

very fast; it runs in O(mcn2) time, where m is the number of images processed, c

is the number of classes, and n is the number of regions. A description of NMS is

35

Figure 3.5: The three green regions are selected because they are the highest prob-

ability regions in the area that do not overlap at a fraction greater than α with a

higher probability region. The red regions are suppressed because the regions they

occupy were already occupied at a fraction greater than α by a higher probability

region

given in [9] and an example is shown in Figure 3.5.

Hypothesis Selection Hypothesis selection assigns class labels to regions of an

image that have been featurized, or disregards the region. Like NMS, it is very

fast with respect to region proposal or featurization. Hypothesis selection can be

undertaken in one of two ways. In the first method, the algorithm is told the number

of objects to detect in the image (e.g., Figure 3.6-a shows a situation where it is told

that there is one object in the image, when there are in fact 4). In the second (more

realistic) method, the algorithm is not told how many objects (if any) are in the

image, and it must determine which of its thousands of regions are valid detections

using the confidence output from the R-CNN, as shown in Figure 3.6-b.

36

Figure 3.6: Comparison of two hypothesis selection methods, namely (a) top-k

selection, or (b) selecting all detected objects greater than a known probability

threshold. On the top, the system is told to select only one hypothesis (shown

on the left) despite four ground truth objects being present. On the bottom, it is

allowed to detect multiple objects, and all four ground truth objects are detected.

37

Function: KDRP(Iin, k) returns Rout

1 keypointCoords← siftlikekpDetect(Iin);

2 keypointMean← mean(keypointCoords, Iin);

3 keypointStdDev ← sDev(keypointCoords, Iin);

4 Rout ← [];

5 while len(Rout) < k do

6 r ← generateRandomRegion(Iin);

7 densityPct← getPercentile(len(r), keypointMean, keypointStdDev);

if binomialSuccess(densityPcte) then

8 Rout+ = r;

end

end

9 return rout;

Algorithm 1: Keypoint Density-based Region Proposal (KDRP) Algorithm

3.3.1.2 Keypoint Density Region Proposal Algorithm (KDRP)

Given the inefficiencies of selective search, we propose an alternative for region

proposal called KDRP (Algorithm 1). It generates k arbitrary regions of an image

in two steps:

1. Keypoint Generation: Line 1 computes SIFT features, which correspond

to areas of a large change in the image gradient. These areas are known to

include distinguishing points of an image [33]. By focusing on regions with a

38

high density of these descriptive keypoints, there is a greater likelihood that

one region accurately bounds the target object. KDRP uses standard keypoint

detection algorithms to find and plot points of interest on the image. The

default SIFT-like features we use in step 1 are determined by cross validation

using permutations of 8 keypoint methods on the UEC food dataset and the

CUB bird dataset. The greatest performance boost is due to Shi Tomasi

features, Oriented Rotated Brief (ORB) features, and Solenoidal Tracker At

Realivistic Heavy Ion Collider (STAR) features. This differs from the existing

method of segmentation and nearest neighbor search of color segments, under

the assumption that regions will contain strong corners and edges of the image,

which is needed for recognition and detection.

2. Region Hypothesis: In line 2, a square window is slid over the given image

using a uniform stride,and the density of key points from line 1 is sampled.

After computing the mean and standard deviation of the region density, lines

5 through 8 stochastically generate a region (not of fixed width to height

ratios), and examines how its density compares to the baseline just established.

Regions in the nth density percentile are retained for detection following a

binomial sampling with an n% chance of success. Sampling in this manner

has been shown to reduce bias [1]. This differs from traditional RCNN with

selective search in the time required to produce the equivalent number of

regions.

A major advantage of KDRP versus selective search is that the exact number of

39

Figure 3.7: KDRP example of Max Scherzer batting. Red keypoints are ORB

features, while green keypoints are STAR features. Only 5% of the regions are

shown for increased visibility (a), and color segmentation used to generate selective

search regions is shown in (b).

regions to be used can be selected. The selective search implementation in MATLAB

(as used in [9] [10]) has a fast and slow mode (number of opponent color spaces

that are clustered making the speed difference), but the former cannot generate

more regions than the slow mode. We conjecture that using relatively fast keypoint

detection methods [33] will be faster than the selective search method that generates

and clusters opponent color spaces. An example of regions generated with KDRP

is shown in Figure 3.7-a, while a different image generated using selective search is

shown in Figure 3.7-b.

3.3.1.3 Experimental Results

Our evaluation objective is to assess the performance advantages of KDRP

versus selective search on fine-grained detection and classification tasks. Our metrics

are accuracy and response time.

We evaluate the two region proposal algorithms on the following two datasets

40

in Table 3.3.1.3. Since both datasets include bounding box coordinates, they are

suitable for detection and classification evaluation. They offer unique challenges for

detection above and beyond being fine-grained:

• UEC-100 food dataset: This contains pictures of 100 categories of Japanese

food, with bounding box annotations provided. UEC-100 has a variable num-

ber of ground truth objects per image, so we cannot hard code the algorithm

to search for a pre-specified number of items. Some example categories are

Miso Soup, Chinese Soup, Soba Noodle, and Udon Noodle.

• CUB-200 bird dataset: This contains pictures of 200 bird categories, with

bounding box annotations provided. This presents a notoriously difficult clas-

sification task due to its many fine-grained categories. Example categories

include American Crow, Yellow Bellied Warbler, Rock Warbler, and Balti-

more Oriole.

Dataset Train/Test Number Classes Instances Per Image

UEC 100 10205/2966 100 Variable (0, n]

CUB 200 5994/5794 200 1

Table 3.1: Dataset Attributes for UEC-100 and CUB-200

We compared our implementations of the following two region proposal algo-

rithms:

1. Selective Search Region Proposal (SSRP)

41

2. Keypoint Density Region Proposal (KDRP)

To test the two alternative region proposal approaches, we kept the detection-

classification pipeline identical across the approaches except for line 1 (in Algo-

rithm 1). However, the differences in the region proposal approaches do affect the

downstream processes of feature extraction, NMS, and hypothesis selection.

For feature extraction, we separately trained and fine-tuned the pre-existing

ImageNet model VGG16 [6], modifying only the output layers of the classification

and bounding box regression steps. No other layers were modified (fully connected

or convolutional). Fine-tuning was performed over the course of 5,000,000 iterations

with a base learning rate of .01, decreasing by a factor of 10 every 500,000 iterations.

The momentum term was set to .9, and weight decay was set to .0005.

During training, proposed regions were generated by the SSRP and KDRP

algorithms, respectively. Using [23], selective search was applied to generate region

proposals. The number of regions per image varied, as it depends on color features

of the image, and averaged to around 2,000 per image. The number of regions

generated by KDRP was set to 2,250; this was the maximum number of regions

that could be used without the total time exceeding our predetermined threshold of

1 second per image.

Featurization has no tunable parameters, NMS was applied for high probability

windows with an overlap exceeding 30% (as done by [9]), and the threshold for

selecting a region for hypothesis selection when there is an unknown amount of

objects in the ground truth was set to p > .88. This value was determined through

42

cross validation of a small hold out set from training.

We used the following two measures to compare the algorithm’s performance:

• Time (t): The response time taken to process a test image.

• Detection accuracy (a): We consider an object to be correctly detected if

the intersection over union of the ground truth and bounding boxes is greater

than 50%. Correctly identified ground truths are True Positives (TP), ground

truths not covered by at least 50% of the detection box (or of the wrong class)

are False Negatives (FN), and bounding boxes that do not correctly detect

exactly one object are False Positives (FP). Average accuracy is defined as

follows, for x ∈ {SSRP, KDRP]}: µax = TP
TP+FP+FN

We tested the following two null hypotheses using standard t−tests:

• KDRPs pipeline is faster than SSRPs pipeline: H0 : µtKDRP < µtSSRP , where

µtKDRP is the mean image processing time for the KDRP pipeline and µtSSRP

is the mean image processing time for selective search.

• There is no difference between the detection accuracies of the KDRP and

SSRP pipelines. H1 : µaKDRP = µaSSRP where µaKDRP is the mean accuracy

for the KDRP pipeline and µaSSRP is the mean accuracy for selective search.

The results of our evaluation are summarized in Table 3.2, which shows that

KDRPs image processing response time is less than half of SSRPs for the two data

sets (.96 seconds versus 1.96 seconds, and .968 versus 1.997 seconds). Therefore, we

accept Hypothesis H0.

43

Table 3.2: Mean time and detection accuracy of the KDRP and SSRP pipelines

Measures Processing Time Detection Accuracy

Dataset KDRP SSRP p KDRP SSRP p

UEC 100 .960 1.960 <.0001 68.03 68.19 .546

CUB 200 .968 1.997 <.0001 66.24 65.18 <.0001

Table 3.3: Region proposal computation time as a percentage of total processing

time

Dataset KDRP SSRP

UEC-100 63.0% 85.0%

CUB-200 62.5% 86.1%

Also, KDRPs detection accuracy does not differ significantly from SSRPs

(68.03 versus 68.19, p = .54) for the UEC data set but is significantly higher for

the CUB dataset (66.24 versus 65.18, p = .00009). Thus, Hypothesis H1 is not

supported.

We conclude that KDRP increases speed by roughly 100% versus SSRP with-

out compromising detection accuracy in all cases (further investigation is warranted

to why sometimes it does change accuracy). Furthermore, it reduces the overall pro-

cessing time per image to under a second, which permits near real-time processing

(a requirement for our target applications).

Earlier, we argued that region proposal is the most time-intensive step in the

44

Figure 3.8: Effect of proposing fewer regions per image on detection accuracy for

UEC-100 and CUB-200

detection and classification pipeline. Table 3.3 shows that it is as high as 63%

for KDRP and 86% for SSRP. Consequently our efforts in reducing the overall

computation time were well motivated.

Unlike SSRP, KDRP provides the ability to control the number of regions

proposed. We reported the results in Table 3.2 with a setting of 2250 proposals.

We explored the relationship between the number of proposed regions and accuracy.

The results of our study are shown in Figure 3.8. There is steady but small decrease

in accuracy until reducing from 2250 to 500 proposals, after which there is a steep

decrease. The overall computational time at 500 proposals for one image is .361

seconds for CUB-200 (region proposal accounts for 43% of total time), and .372

seconds for UEC-100 (45%).

45

3.3.1.4 Applications of KDRP

Navy applications that require detection and classification of objects in im-

ages demand high accuracy and real-time response. However, while deep networks

promise high levels of accuracy, they cannot yet respond in real-time. In this sec-

tion, we presented and evaluated a new approach called KDRP that modifies the

current deep network approach to substantially reduce the response time without

compromising accuracy. Furthermore, we evaluated our approach on fine-grained

classification tasks that are relevant to naval decision making. Our goal was to de-

velop a pipeline that places accurate bounding boxes around objects of interest in a

dataset in under a second, so that it could be used in a low frame per second surveil-

lance camera setting. We demonstrated that this goal is practically achievable with

currently available hardware. In our future work, we will investigate methods for

improving KDRP by adding different region aspect ratios or scales upon acceptance.

The nature of Fast R-CNN networks makes additional convolutions take marginal

time, and increasing the number of regions proposed can only increase accuracy.

46

Chapter 4: Contextual Visual Signals

“Please don’t use this sentence out of context.

–Kevin McPherson-Eckhoff, Easy Peasy. ”
4.1 Introduction

In this chapter, we explore two different meta-algorithms for leveraging spa-

tial context to boost information gain. In Section 4.2 (which is my work from the

paper SPARCNN: SPAtially Related Convolutional Neural Networks published in

the Applied Imagery and Pattern Recognition Workshop 2016) we use co-located

objects in the scene, and relative size and aspect ratio information to boost accu-

racy. In Section 4.3 (submitted as a full paper titled Unknown Target Classification:

A Contextual Classifier Study currently awaiting decision on acceptance from the

British Machine Vision Conference 2019) we explore using regions of non-target (or

background) pixels of an object, and study the varying effects on object detection

these pixels can cause.

47

4.2 Object Correlation (SPARCNN)

Note: Section 4.2 is mostly the published work of Turner et. al in 2016 AIPR in

the paper SPARCNN: SPAtially Related Convolutional Neural Networks.

This work was supported by the Office of Naval Research.

The ability to accurately detect and classify objects at varying pixel sizes in

cluttered scenes is crucial to many Navy applications. However, detection perfor-

mance of existing state-of-the-art approaches such as convolutional neural networks

(CNNs) degrade and suffer when applied to such cluttered and multi-object de-

tection tasks. We conjecture that spatial relationships between objects in an image

could be exploited to significantly improve detection accuracy, an approach that had

not yet been considered by any existing techniques (to the best of our knowledge)

at the time the research was conducted. We introduce a detection and classification

technique called Spatially Related Convolutional Neural Networks (SPARCNN) that

learns and exploits a probabilistic representation of inter-object spatial configura-

tions within images from training sets for more effective region proposals to use with

state-of-the-art CNNs. Our empirical evaluation of SPARCNN on the VOC 2007

dataset [68] shows that it increases classification accuracy by 8% when compared to

a classification schema that does not exploit spatial relations. More importantly, we

obtained a higher performance boost of 18.8% when task difficulty in the test set is

increased by including highly obscured objects and increased image clutter.

Evolving from the early work of [8], which primarily focused on image clas-

sification, CNNs can now achieve state-of-the-art performance on object detection

48

tasks [10]. Although CNNs have become adept at processing pixels to classify ob-

jects, and even computing bounding box targets based on the objectness score of

the region, there is additional information about the object or objects in an image

that we cannot discern from a low level pixel signal. In this paper, we present a

new system for multiobject detection in images with clutter called Spatially Related

detection with Convolutional Neural Networks (SPARCNN). SPARCNN includes

the following three key features:

• It leverages and extends our previous state of the art region proposal technique

called KDRP [41]; KDRP is a region proposal technique that uses density of

high interest features to propose regions with higher likelihood for objects of

interest.

• It recursively proposes regions based on where it has previously observed ob-

jects.

• It adjusts thresholds for object detection based on what objects have been

detected with a sufficiently high confidence.

The rest of the section is organized as follows: Section 4.2.1 presents the

contributions of the SPARCNN approach to the existing detection pipeline with a

subsection devoted to each of the three features enumerated above. Section 4.2.2

presents the results of SPARCNN evaluation on the VOC 2007 dataset [68], and

Section 4.2.3 concludes the paper with a discussion and outlines our planned future

work.

49

4.2.1 Methodology

SPARCNN is designed to detect objects in a cluttered image with high ac-

curacy. During training, two models are trained for use by SPARCNN; Fast R-

CNN [10], and the Spatial Relation Model (SRM).

SPARCNN Training SRM captures the following attributes about a training

dataset assuming that there are n classes, it stores the following information:

1. Fraction of Class Label- SRM sums all objects that are of a given class a, and

creates an n−dimensional list of the probability of any given class

2. Fraction of Images Present- : Sums over all images I where there is at least

one instance of an object of class a, and stores them in an n−dimensional list

3. Conditional Probabilities- Given a class a, and another class b, this is calculated

for a given b as the probability of any given image containing a and b divided

by the probability of an image only containing b. This is stored in an n × n

matrix.

4. Spatial Probabilities- Given class a, and another class b, this is the normalized

fraction of locations on the divided grid, as shown in Figure 4.1. The anchor

object class a is defined to occupy 100% of z4 in the diagram, and the secondary

object has its overlap with each other region calculated. For example, an object

that is strictly above Z4 would increment (1 object * 1.00 overlap). This is

done for every pair of objects in every image, and normalized, so the end result

50

Figure 4.1: - Spatial Probability Locations

is an n2∗9 sized lookup table, where any given entry is the normalized fraction

where class b has occurred in relation to class a.

5. Relative Sizes- Given class a, and another class b, this is an n2×2 dimensional

list of the mean relative pixel2 sizes of a
b
, as well as the standard deviation of

the relative sizes.

6. Aspect Ratios- For any arbitrary class a, an n × 2 table is calculated for the

mean and standard deviation of the shorter side of the image over the larger

side of the image. All aspect ratios will fall in the range of (0,1].

Region proposal is the only difference in the training of SPARCNN versus Fast

R-CNN; the SRM is also trained. The Fast R-CNN models trained in [10] can still

be used to process the image corpus.

51

Applying SPARCNN The application of SPARCNN varies from that of tradi-

tional Fast R-CNN, both in terms of region proposal and hypothesis selection. Both

techniques leverage the SRM to search for and select objects that are overlooked by

a simpler region proposal and convolution method. SPARCNN is a recursive method

for object detection that proposes regions based on highly confident detections, and

adjusts detection thresholds based on the objects in the image that we are confident

of observing. Pseudocode for SPARCNN is shown in Algorithm 2.

Region proposal in SPARCNN is performed in three recursive tiers based on

object size: large object, medium object, and small object.

Region proposal is an iterative and recursive process. Iteration is done using

three ranges of window sizes; large (where the width of the region is between 40%

and 99% of the width of the image, height of the region is with 40% and 99% the

height of the image), medium (constrained similarly between 10% and 64%), and

small region proposal (constrained between 2% and 16%).

Region Proposal Building on the work of KDRP [41], SPARCNN uses a key-

point density based approach for region proposal. As more objects are detected

in an image, prior knowledge of cooccurring objects can be leveraged to improve

the proposal of regions to search for additional objects nearby. Once KDRP has

detected an object, it begins a new type of region proposal (the function genSRMre-

gion in the pseudocode). Regions from the SRM are generated to be consistent with

training set observations. Algorithm 3 initializes keypoints as a blank array, and its

first loop is over every detected object in the image. For each object detected with

52

Function: SPARCNNDetect(Iin, SRM) returns confirmobj

1 confirmed← [];

2 for sizein[LARGE, MEDIUM, SMALL] do

3 firstLoop← True;

4 nmsDetection← None;

5 while nmsDetection 6= Noneor firstLoop do

6 firstLoop← False;

if knownDetections == None then

7 regions← getKDRPregion(size, img);

end

else

8 regions← getKDRPregion(size, img, SRM, confirmed);

end

9 newDetections← sparcnnDetect(regions, SRM, confirmed);

10 nmsDetections← nonmaxSupress(regions, confirmed);

11 confirmed← nmsDetections;

end

end

12 return confirmed;

Algorithm 2: Pseudocode for SPARCNN detection

53

a sufficiently high probability, it loops through every class c observed in the training

set, and counts the number of times n the detected object class and objects in class

c co-occurred in the training set. Then using the spatial probability location grid

of Figure 4.1, β (given β = 15 is a constant number to produce more keypoints and

regions determined through cross validation) keypoints are randomly generated in

the corresponding sector of the grid, and their (x, y) locations are recorded.

Function: genSRMregion(Iin, SRM, size, confirmedDetects) returns

SRMregionsout

1 keypoints← [];

2 for detectioninconfirmedDetects do

3 for classinsrm.classLabels do

4 coOccur ← srm.getCoOccurances(det.class, class);

5 keypoints+ = kdrpKeypointGen(srm.loc, det.cls, class);

6 SRMregionsout = kdrpGenerate(size, numreg =

β ∗ coOccur, keypoints);

end

end

7 return SRMregionsout;

Algorithm 3: SRM region generation pseudocode

For example, if objects of type person and dog co-occurred 73 times, SPAR-

CNN would generate 1, 095 keypoints. Suppose that 30% of dogs were located below

people (box Z7), 50% were found overlapping people (Z4), and 5% and 15% were

54

Figure 4.2: - Regions generated by SRM information

found to the left and right (Z3 and Z5 respectively). SPARCNN would mirror and

split the grid on the central y axis (we assume that for everyday objects it does

not matter if something is to the right or left; consider an object or video reflected

about the y axis, it is easily understandable by humans both ways), z3+z5
2

= 10%,

which yields new values for Z3 and Z5. SPARCNN would then distribute the 1,095

keypoints evenly in proportion to the spatial matrix (i.e., 329 keypoint locations

under the person detection in Z7, 547 keypoint locations overlapping the person,

and 109 keypoints generated on the left and right side of the person, respectively).

This is done for every class, and then used as input to KDRP. Usually, KDRP op-

erates by detecting binary patterns and keypoints in the changes of gradient of the

image to generate regions [41], but these keypoint locations can be given directly

to KDRP so it selects high keypoint regions instead of local binary patterns [33].

Using this method, SPARCNN is likely to generate the following regions looking for

a dog given information on where a person is located as seen in Figure 4.2.

55

Hypothesis and Threshold Adjustment The confidence of the detections has,

to this point in the SPARCNN process, been fixed; only different regions have

been proposed than would have been proposed by a traditional selective search

algorithm [23] or by a region proposal network [13]. Although region proposal

techniques can be used to reduce time constraints [41], as long as the correct region

is proposed by multiple region proposal techniques, they are unlikely to reduce

detection accuracy. There are two ways to adjust hypothesis acceptance; by raising

or lowering the threshold of probability needed for detection (Tp), or by raising or

lowering the probability of the region that has been convoluted Rp. Tp is selected

through multi fold validation to produce the maximum detection accuracy in all

cases where Rp ≥ Tp. In general, the amount that we want to change the probability

is split between Rp, and Tp such that the probability of detection will be a positive

number, but a number smaller than 1.00 (since this would make it impossible to

identify an object). We used a tuning set to set a minimum signal strength needed

for detection of .36 from the network. No matter what objects are around it, and if

it matches the aspect ratio and relative size perfectly, positive detections cannot be

set at lower values without spurious detections. The three types of evidence from

the SRM can be used to influence threshold or detection confidence:

1. Object Aspect Ratio

2. Object Correlation

3. Object Relative Size

56

Object Aspect Ratio For each object in the training set, we record the ratio of

the longest side to the shortest side of the object, along with its class c. We do not

use a fixed height and width because, for example, a bottle (which is usually a little

more than twice as long as its width) could be misidentified if it were laying on its

side (in a bottle rack for example). After computing these ratios, we calculate the

mean aspect ratio (Ac) and the standard deviation of the aspect ratios (Sc).Because

aspect ratio may be noisy (e.g., there may be an oddly shaped water bottle, or

perhaps a person has a square shape due to a kneeling posture), even if the as-

pect ratio matches the threshold, it might shouldn’t necessarily be changed greatly.

When applied, SPARCNN computes the aspect ratio and the Z-score (number of

standard deviations away from the mean), and the region probability and threshold

probability are adjusted as shown in Table 4.1.

Table 4.1: Aspect Ratio Evidence

Experimental value

x in Z score

Classification δRp δTp

−1 ≤ x ≤ 1 Evidence For + .02 -.02

−2 ≤ x or x ≥ 2 Neutral 0 0

−3 ≤ x or x ≥ 3 Evidence Against - .02 + .02

Object Correlation The increase in SPARCNNs accuracy is primarily due to

the use of object correlations to boost detections. SPARCNN creates a copy of the

57

Figure 4.3: Two people are visible; one is larger than the cars and one is much

smaller

image, but instead of 3 pixel values at each (x, y) coordinate, it assigns a probability

modifier for each class. After an object in class A is detected, then for every object

in class B, SPARCNN, will update every pixel using the probability modifier to

reflect changes in probability of all the classes. In the SRM, let the fraction of

objects that occurred in the same spatial position with respect to A be SA, and

let PB = P (B|A). SPARCNN modifies the value needed for detection as follows:

Tp = Tp(SA × PB). This ensures that objects that are conditionally codependent

will lower the threshold, and the effect is even greater if they were in a previously

detected spatial relation. Each pixel on the representation of an image is assigned

a new threshold weight. To determine the threshold needed for any given region,

SPARCNN sums all of the pixel value thresholds contained in that region, and

averages them.

58

Table 4.2: Relitive Size Evidence

Experimental value x in Z score Classification δRp δTp

−1 ≤ x ≤ 1 Evidence For + .02 - .01

Else Inconclusive 0 0

Relative Object Size For every pair of objects in the training images, the relative

size of every object is recorded. The means and standard deviations of the class

wise pairs are computed. Much like aspect ratio, this is a weak evidence for object

identification, as objects that are near or far from the camera may appear to be

incorrect in object size, but actually be a real detection, as highlighted in Figure 4.3.

This is considered weaker evidence than aspect ratio.

4.2.2 Experimental Evaluation

Objective And Hypothesis Our objective is to assess whether, by leveraging (1)

spatial relationships between objects and (2) conditional probabilities as described

in Chapter 3, SPARCNN would outperform neural networks using the same region

proposal techniques and network topology. Our first hypothesis (H1) is that by

detecting additional objects, the increase in recall from previously overlooked objects

will be greater than the false positives that arise from misidentifying objects, so we

expect an increase in accuracy and F1 measure.

H1 : AccuracySPARCNN > AccuracyBASELINE (4.1)

59

Our second hypothesis H2 is that even with the spurious false positives from

SPARCNN, the added true positives will increase accuracy and F1 measure enough

such that the Area under the ROC curve (AUC) will be no less than the AUC of

the baseline. Stated formally:

H2 : AUCSPARCNN = AUCBASELINE (4.2)

We test H1 using an A/B Split test, and H2 using a classwise paired t test. We

used the very deep network full model VGG-16 [6] trained using Fast R-CNN [10].

We set hyper parameters and SRM evidence levels (Table 4.1 and Table 4.2) using

5-fold cross validation on a held-out data set. In this experiment, we compared two

systems:

• Baseline: uses KDRP + Fast R-CNN without using SRM for region proposal

or hypothesis selection.

• SPARCNN: uses the additional region proposals and hypothesis selection cri-

teria, and undergoes hypothesis changes and detection threshold adjustment

as described in Section 4.2.1.

Datasets We tested SPARCNN only with PASCAL VOC 2007 [69]. The dataset

split and annotations were the same as used in [10], and dataset characteristics are

given in Table 4.3.

PASCAL VOC 2007 also has a difficult flag that can be toggled True or False.

An object in the image can be labeled as difficult for several reasons, most often

60

Table 4.3: PASCAL VOC 2007 characteristics

Characteristic Value

Number of Classes 20

Class Distribution Skewed (349 table vs. 8000 person)

Objects Per Image (px) 1 - 42

Target Object Size 44 - 248k

Train / Test Split 8539 / 1424

because it is cropped or partially shown in the image, as exemplified in Figure 4.4.

Evaluation Metrics We measured the algorithm using the following measures:

accuracy, recall, precision, F1 measure, and AUC. Three outcomes were recorded

for each detection attempt/undetected object:

• True Positive (TP): A true positive is recorded if the predicted bounding box

has an intersection over union (IoU) of greater than 0.5, and is of the correct

class.

• False Positive (FP): A false positive is recorded for every detection that does

not have an IoU of greater than 0.5 with a previously undetected object of the

correct class.

• False Negative (FN): A false negative is recorded if none of the system detec-

tions match the ground truth bounding box for IoU and class label.

61

Figure 4.4: The two green objects are not difficult because they are entirely visible,

but the person who we can only see the legs of is considered difficult.

Using these definitions, the standard for the following four terms is defined as:

• Accuracy = TP
TP+FP+FN

• Recall = TP
TP+FN

• Precision = TP
TP+FP

• F1 = 2 ∗ Precision∗Recall
Precision+Recall

Results Table 4.4 and Table 4.5 show the results (for the first four metrics) for

two dataset conditions: (1) without and (2) with difficult annotations, where the

boldfaced number indicates the system that significantly performed better.

For both datasets, SPARCNN outperformed Baseline on accuracy, recall, and

F1, but performed worse on precision. This is because SPARCNN adds detections

62

Table 4.4: PASCAL VOC 2007 Evaluation without difficult annotations

Metric Baseline SPARCNN Change (Percentage)

Accuracy 45.96 49.29 7.27

Recall 51.72 66.78 29.12

Precision 80.48 65.3 -16.86

F1 Measure 62.97 66.04 4.88

Table 4.5: PASCAL VOC 2007 Evaluation with difficult annotations

Metric Baseline SPARCNN Change (Percentage)

Accuracy 39.89 47.37 18.75

Recall 42.92 58.17 35.53

Precision 84.97 71.84 -15.45

F1 Measure 57.04 64.29 12.71

63

that would have been skipped due to lower confidence than the needed threshold.

Although SPARCNN does this correctly more often than not (as evidenced by the

higher accuracy and F1 measure), it also creates additional false positives, which

reduces precision. The A/B split testing for both the standard and difficult splits

are statistically significant at a level of α = .05, so we accept the hypothesis H1.

We also found that SPARCNN increases relative performance for difficult (i.e.,

cluttered, overlapping) scenes. The percentage change from the non-difficult to

difficult dataset conditions, in comparison with Baseline, is more than double, and

the F1 measure increases nearly three-fold, while the percentage change in precision

actually decreases. As more clutter and obfuscation of ground truth target objects

are added to an image, fewer false positives result, which increases precision.

In the more commonly used metric for PASCAL VOC 2007 evaluation (AUC),

there was no significant difference at a level of α = .05 between the baseline (0.6474)

and SPARCNN (0.6431). A classwise comparison is shown in Figure 4.5. Although

for some classes SPARCNN does better, other times it does worse, and is often not

statistically significant. Overall SPARCNN has less area under the ROC curve by

a small amount.

4.2.3 Conclusion

Although SPARCNN did not outperform Baseline for AUC, this metric does

not accurately highlight its improvements. Using the same cross validation scheme to

select parameters for SPARCNN to use for detection threshold levels as the baseline

64

Figure 4.5: Classwise comparison of AUC for SPARCNN v. Baseline

algorithm, there exists a set of parameter settings for which SPARCNN significantly

outperforms Baseline in terms of object recall, while also increasing accuracy and

F1.

This study warrants future work in possible improvements to SPARCNN so

that it can be applied in real-time tasks that require instantaneous monitoring and

detection. For example, we plan to use a different network topology that would pro-

pose regions automatically as part of convolution as seen in [13], using information

about object semantics and what can physically exist, and using different trained

networks on different sized objects for our large, medium, and small search regions.

4.3 Non-Object Correlation

While Section 4.2 dealt with correlated, spatial object correlations, this section

will instead deal with Non-Target Pixels.

65

Note: Section 4.3 is mostly the submitted for publication work of Turner et. al

in 2019 BMVC in the paper Unknown Target Classification: A Contextual

Classifier Study. This work was supported by the Knexus Research Corpo-

ration.

4.3.1 Introduction

Convolutional Neural Networks (CNN) have been the leading algorithm for

creating of feature embeddings for object classification since 2012. Due to nearly

a decade of improvements in deep neural network algorithms, Graphics Processing

Unit (GPU) hardware, and megalithic sources of high quality human annotated

data, these networks are now able to not only classify, but also calculate detection

box locations of target objects in an image. They can even calculate pixelwise masks

of these semantic segmentations with superhuman accuracy [70] [71] [72].

A weakness of these systems is their inability to use information beyond the

target pixels. In this work, we aim to use context surrounding target objects to

boost our classification accuracy, and gain insight into ways that we can exploit

these non-target Pixels (NTP) in future networks.

Convolutional Neural Networks (CNNs) are becoming synonymous with com-

puter vision. All-state-of-the-art classification and detection systems use these high

powered algorithms. While the hardware, data, and algorithms used for this task has

progressed greatly, the ways in which we use the data given have barely progressed

since the first CNNs.

66

In 2012, Alex Krizhevsky’s implementation [34] of a Multilayer Perceptron

(MLP) geared towards computer vision in the form of a CNN won the Imagenet

Large Scale Visual Recognition Challenge (ILSVRC) by 10 and 15 percentage points

(respectively) on classification and localization (respecitvely). CNNs cemented them-

selves as the new standard in image processing algorithms for discriminatory net-

works.

The ILSVRC ran for five years after AlexNet first won, with major advance-

ments being made in 2013 with the Zeiler-Fergus model [35] introducing deconvolu-

tional networks, in 2014 with the first inception network [36] introducing the tensor

split-concatenate procedure inception module, and in 2015 with Microsoft Research

introducing the Residual Network [17] using skip connections to reduce training

difficulties caused by vanishing gradients.

Detection networks have advanced from their earliest forms of a sliding window

approach [9] used on feature layers of the network [58] [10] [13] to the more modern

single shot approaches [73] [74] [75] with algorithmic improvements for handling hard

negative examples [76]. Although a handful of these networks have used context

in the form of non-target pixels [17] [77], these works used context for boosting

performance in classifying negative examples, In contrast, we consider an integrated

system to study the effect of these NTPs on classification accuracy of objects.

The use of context in images is a field that has not garnered more than a small

fraction of the research in the area. Bell et al. [39] use recurrent neural networks on

multiple scales to scan the feature maps of the image for inter-object relationships

to make further predictions on these relationships. This work leverages IRNNs [40]

67

which are identity matrix initialized Rectified Linear Unit (ReLU) recurrent transi-

tions on the feature mapped output space of a fast-rcnn [10]. Although these were

successful in raising the mAP of complex object detection systems, this system used

target pixels from other objects in the scene (such that it would gain no advantage

in a single target image), and used the stored feature map output from the network,

so is not end to end trainable.

A different work using context for gains in detection accuracy is that of Turner

et al. [2], where a VGG16 feature extractor [6] was used in conjunction with a Fast-

RCNN detection net to compute object correlation probabilities in training, and to

apply these known relations to modify the probability of detection at inference time

for increased accuracy. In removing biases from the model added by using training

data, the work builds correlative probability modifiers using a bias reducing region

proposal technique [41]. Although increasing accuracy and average precision on the

VOC2012 dataset, this technique did not leverage NTPs explicitly, and requires a

large annotated dataset to generate the necessary object correlation matrices for

detection.

Another interesting approach using recurrent neural networks in the field is

that of Minh et al. at Deep Mind [42] on attention based networks. This work

uses a separate recurrent neural network called a Glimpse Network together with

a Glimpse Sensor to sample an image patch or chip at multiple scales in order to

guide the network. Although this does focus on NTPs similar to our work, it is

using the recurrent model to shift the attention of the network to new locations to

complete part of a larger image, such as discovering the full sequence of numbers on

68

the Street View House Numbers (SVHN) or MNIST dataset.

The remainder of the Section is organized as follows: Section 4.3.2 shows im-

plementations of context of NTPs, and demonstrates use cases, as well as providing

a brief review on the convolutional architectures and algorithmic prerequisite to this

work. Section 4.3.3 details the reasoning, methodology, and results of several theo-

retical and applied experiments regarding usage of NTPs for classification accuracy.

Section 4.4 contains a concluding discussion of the work, and ideas and points to

next steps for natural future extensions.

4.3.2 Computational Networks

Since the Imagenet challenge results in 2012 where Neural Networks took first

place [34], CNNs have been recognized as the most accurate image/region classifier

in computer vision. Classification in neural networks is done by passing the input

image pixel matrix in through a variety of processing layers to produce feature maps.

These processing layers are typically one of the following (Inception v3 [78] was used

as the feature extractor for this work, and its layers are listed).

• Convolutional Layer - These rectangular (often square) layers serve as edge

detectors from images and low level maps, and feature ensemblers from higher

level maps. The shape of these filters dictates the dimensional depth of the

output tensor.

• Max Pooling- These layers are helpful in size reduction of the feature maps,

as well as suppressing irrelevant and noisy features from the maps.

69

• Saturating Non-Linearity- Non-linearities are needed to increase the expres-

sive power of the networks beyond a simple single layer perceptron-type CNN.

Because of vanishing gradient problems observed in deeper networks, our im-

plementation leverages Rectified Linear Units (ReLU) [79].

• Batch Normalization- Batch normalization is used to increase stability in train-

ing deep neural networks, and reducing internal covariance shifts of the net-

work [16].

The feature map outputs of these processing layers are generally given as 3-

dimensional tensors (w × h× c), where strong activation in certain channels in the

feature map corresponds to the presence of certain classes at position (x, y) in the

image1. In the ultimate layers of the feature map, the tensor is flattened, and non-

linear combinations of neuron activations in the feature map indicate which class

labels are likely and unlikely.

Detection in CNNs is done in a multitude of ways, but they can all be seen

as a variant of the original Regional Convolutional Neural Network R-CNN [9],

where the features extracted from a subspace region of the original input space are

used to serve as a prediction for that region. As enumerating every possible region

in the input image for processing is exponential with respect to the input space,

techniques for guided region selection were used [23] [41], and later replaced by

networks that used automatic region proposal networks [13], or feature pyramid

1Because of convolution stride, and down sampling, and other position destructive operations

in the network the feature map location is not the location on the input image.

70

Figure 4.6: Three figures illustrating context, showing (left) a labeled coffee mug in

a natural desk scene, (center) only the context of the coffee mug in the scene, and

(right) only the coffee mug itself, with as much context as possible removed.

networks [75] to detect regions of interest automatically based on the objectness

(quality of containing objects) of regions.

4.3.2.1 non-target Pixel Orderings

Here, we define computational context (differently from the normal operat-

ing systems definition of process data and resources) as the non-target parts of the

image that are not the target pixels, as seen in Figure 4.6. In the figure, the coffee

cup can be seen rather easily without the use of context that it is near a hand, a

wooden desk, and a computer. Looking further into the image though, we see a grey

long object that is not easily identified. By adding information (the grey object is

sitting on a desk, the grey object is touching the bottom of the keyboard), we may

be able to correctly deduce that this object is a gel wrist rest for a keyboard.

71

Signal v. Non Signal Given an input image I, and the set D of object class

ground truths in the image set, and a rectangular bounding box, we will define set

T (I) as the set of target pixels and N (I) as the set of non-target Pixels (NTPs).

For each pixel value pij in the image space I, we apply the indicator function 4.3 to

determine inclusion in T (I) where x0 and y1 represent the left and bottom bound-

aries respectively, and i represents the horizontal pixel location, while j represents

the vertical pixel location:

1T I =


1 ∃d ∈ D : dx0 ≤ i ≤ dx1 ∧ dy0 ≤ j ≤ dy1

0 else

(4.3)

While T (I) is well defined with multiple ground truth objects in the image,

the definition of NTPs is more complicated in this scenario. Are the NTPs all of

the area around the target object, regardless of whether it contains other target

objects? If this is the case, then we need to define |D| sets of NTPs, and for |D|− 1

of these sets, every pixel will belong to both the T (I) and N (I) sets.

For this work, we will assume |D| = 1, so a subset of the data was taken such

that only images with one object were used. Multiple object correlative contexts

are explored in [2], and treating target pixels as NTPs is left for future work.

non-target Pixel Orderings Now that we have defined what a non-target pixel

is, we define the three different orderings of NTPs: Unordered regions (uNTP),

Ordered regions (oNTP), and Absolute ordered pixels (aNTP). For the uNTP and

oNTP regions, a minimum region side parameter α = 70 and a sampling rate pa-

72

Figure 4.7: Left- Airplane class showing the uNTP and oNTP regions. Every region

is a member of airplane in uNTP, while oNTP red regions are airplane south, cyan

is airplane lateral, and magenta is airplane north. This is shown with β = 6. The

α parameter was set too high for small regions from the east, unlikely to contain

information. Right- aNTP of the pixels surrounding the object.

rameter β = 9 were selected through a validation set, meaning that there must be

at least 70 pixels between the edge of the image and the bounding box of the object

on each side, and 9 random regions of a minimum size of 70 were taken from each

side of the ground truth bounding box. Examples of all are given in Figure 4.7.

• Unordered regions (uNTP)- Unordered regions are random crops with a height

and width minimum of α pixels such that no part of the region contains any

target pixels. Any uNTP taken from an image with an object of class label c

is also given label c.

• Ordered regions (oNTP) - Ordered regions are generated in the same manner as

uNTP, except that they are given an additional label: north, south, or lateral.

Lateral includes both east and west crops, as this has been shown to not affect

the ability to comprehend natural images from data augmentation [34]. oNTP

can be assigned one or two labels; it is assigned the label if over 50% of the

73

pixels are above or horizontally offset the object bounding box’s y or x axis

respectively. These regions surrounding an object of class c in direction d are

labeled c d.

• Absolute ordered pixels (aNTP) - Absolute ordering is the scenario where we

leave the NTPs undisturbed and not partitioned, only censor out the target

object pixels.

The usage of these regions vary by experiment, which will be detailed in Sec-

tion 4.3.3.

Dataset and Model Creation A variety of experiments were run on this contex-

tual problem, trying to gain insight into best practices for using context in classifica-

tion and detection networks. All of the experiments used a subset of the PASCAL-

parts VOC dataset [80], and 20 further datasets were created. For each of the

twenty classes, a negative dataset was created for that class, where no instances of

the class were seen in the training dataset, but were seen in the testing dataset.

The networks were not pre-initialized on any larger dataset as to not give identify-

ing information away implicitly (even though Imagenet may not contain the same

4, 000 airplane photos as VOC, the network would still have remembered filters of

airplanes from seeing hundreds of thousands of them in initialization). For each of

these 20 manufactured datasets, uNTP, aNTP, and oNTP regions were generated.

To maximize the size of the test set, the unused training images from the dataset

without the class were moved to testing. The 20 datasets have on average 5, 717

training images, and 5, 823 testing images, and are distributed near evenly.

74

An uninitialized inception-v3 [78] was used as the architecture of all of the

networks trained. For each of the 20 datasets, we first trained a discriminative 20-

way classifier on the aNTP regions of all of the training sets. Following convergence

training on this dataset, the model is then trained on the 20−way classification

regions of uNTP. Following convergence on this dataset, the feature extractor is

frozen with the fully connected layers and softmax layers still allowed to change and

further trained on the 60−way oNTP problem. For each of the datasets c ∈ D a

19-way classifier was trained to be a discriminator of every class except c.

All experiments in Section 4.3.3 (except for the last counter-intutive intro-

duction which will be explained at the time) are performed using combinations of

the aNTP trained CNN (CNNa), the uNTP CNN (CNNu), the oNTP CNN

(CNNo), and one of the twenty CNNs {CNNc̄∀c ∈ D} where CNNc̄ is the CNN

trained on every class except c.

4.3.3 Experimental Results

4.3.3.1 Theoretical Results

Effects of Ordering Our first experiment serves two purposes; first to show

that NTPs have discriminative power greater than random chance, and second to

show that more order leads to greater gains in accuracy. The results are shown in

Table 4.6. For CNNo, the cardinality of the class label was not considered in the

classification (such that if the algorithm guessed cat south when the ground truth

class label was cat lateral it was considered correct.

75

Average Recall Precision

CNNu, β = 9 28.59 18.62 26.38

CNNa 38.73 26.39 30.14

CNNo, β = 9 28.73 18.69 26.44

Table 4.6: Effects of ordering of regions on accuracy/PR metrics

Figure 4.8: Left- Accuracy of prediction of censored class fromm CNNa. Right-

Accuracy of prediction of ordered regions of target objects using CNNo.

These results support both claims; by using NTP, we get between a 5 to 8

times improvement in overall accuracy compared to random assignment (5% for 20

classes). Because of the increase in performance in accuracy, as well as precision

and recall, CNNo was used instead of CNNu for the remainder of the work.

Gain by Class A second experiment run was using CNNa and CNNo on the 20

class absolute ordered NTP and the 20 class ordered NTP classification problem

respecitvely 2. For all 20 of the classes in the dataset, the algorithms made clas-

2There are 60 class ordered NTP, but only the target object not cardinality (North, South,

Lateral) was considered, so 20-way classification.

76

sifications on the surrounding areas of the target pixels using only the context and

none of the target pixels. The results are shown in Figure 4.8.

As we expected from our results in the previous Section Effects of Order-

ing, it is clear that the absolute ordered regions provide more contextual information

than the ordered region pixels did (as shown before in Table 4.6), but also that dif-

ferent classes benefit to varying degrees by the usage of context. We expect classes

with a high contextual accuracy (objects where seeing what is around the target

pixels may be very important for classification) to be those that are often found

in a unique context, such as an airplane against a sky background (66.7% accu-

racy on absolute ordered pixels), or a boat in a marine/dock background (64.20%

accuracy on absolute ordered pixels). On the other hand, we expect objects with

a low contextual accuracy to have contextual regions with non-unique objects and

textures, like a dog (which can be seen in a variety of amibguous contexts on carpet,

hardwood, or grass like many other objects having the low accuracy of 8.66%), or

a potted plant which can literally be used as a decoration in virtually any natural

setting (having a low accuracy of 9.76%).

4.3.3.2 Practical Results

Now that we have insight into the theoretical underpinnings of computational

context applied to natural images, we can explore some of the ways in which these

contextual neural networks can be used in conjunction with traditional classification

neural networks to improve accuracy and recall of target objects using NTPs. We

77

give a natural usage of such a network combination next, and discuss appropriate

use cases and metrics to measure performance gains from computational context.

Contextual Boosting To use context to augment classification, we need to de-

vise an algorithm to analyze the classification output from the CNN, and based on

these findings determine whether to use contextual classifier CNNo to aid the clas-

sification. Since the probability of a vector belonging to the distribution of observed

vectors using energy models [81] is of the form:

p(x) =
e−E(x)∑
x e
−E(x)

,

using the raw feature output from the CNN is infeasible as this problem quickly

becomes intractable for vectors of sufficient length to describe natural visual phe-

nomena. Instead, we should consider the point in a validation set where the mean

harmonic mean (F1) of the recall and precision is maximized.

F1 = 2× precision× recall
precision+ recall

= 2×
TP

TP+FP
× TP

TP+FN
TP

TP+FP
+ TP

TP+FN

Since we are adding an additional ground truth answer in the testing set of the

contextual CNN that the plain CNN does not have, we are more likely to reduce the

number of false positive labels by correctly guessing the unseen class and thereby

increasing our precision. As we can see in Figure 4.9, the precision is maximized

at λ = 0.16 for contextual network usage, while recall does not increase at this

78

acc Range avg acc rec Range avg rec prec Range avg prec

CNNc̄ 87.74-89.09 88.40 81.97-84.28 83.13 75.45-87.46 83.78

CNNc̄ + CNNo 87.85-90.44 88.95 81.77-84.35 83.07 75.19-91.32 85.46

Table 4.7: CNNc̄- Control algorithm. This network was trained to classify on 19

different classes, but is tested on 20. CNNo- This system was a control network

(CNNc̄) that utilized the ordered contextual network CNNo for detections under a

probability threshold of λ = .16.

avg acc avg rec avg prec Median acc Median rec Median prec

CNN 87.36 86.67 78.92 90.48 88.60 82.62

CNNT 93.16 94.34 87.74 95.20 95.41 90.84

Table 4.8: Contradicting the dissertation in a short table at the end, bold strategy

Cotton.

point. When the CNN is used with an abstention parameter (where it references

the majority output of randomly sampled ordered regions given to CNNo), we see

that the CNNo system outperforms the control system by nearly half a percentage

point in mean accuracy, and almost two points in average precision in Table 4.7.

4.3.3.3 A Confounding Concluding Experiment

With all of the evidence provided above, it seems that it should be a foregone

conclusion that adding contextual information to networks aids in decision making.

Table 4.8 shows that is not the case. In this table, CNN was trained against the 20

79

λ value

0

20

40

60

80

0 0.2 0.4 0.6 0.8

Recall Precision

Precision and Recall Graphs

Figure 4.9: Accuracy of prediction of censored class fromm CNNa.

class distribution of objects, while CNNT was trained only on the cropped target

pixels (i.e., no NTPs). If context adds power, then why does removing all context

improve the average accuracy by nearly 5 points and the average precision by double

that? We theorize this is because we were using context to add explainable power to

an unexplainable target object; that adding known context could reveal unknown

objects. When framed this way, Table 4.8 does not contradict our findings, but

instead necesitates the usage of context, and looking beyond the target pixels when

dealing with unknowns.

4.4 Contextual Power

In this section, we laid a theoretical groundwork for the usage of context in

natural image scenes in dealing with unknowns. The main argument of the paper

being that there are parts of the image (the NTP) that we are throwing out, because

80

they are not readily usable to increase the classification accuracy of our CNNs. And

while we are technically correct in that sense, it’s a very unsatisfying correctness.

We are moving past the age where we hand an image of a goat in a grassy

field to a neural network and having it return the label ”goat” and are impressed.

While performance in this was made better and more accurate by adding wider

filters [35], more layers in an inefficient way [6], more layers in a very clever way [17],

and countless others we are still re-inventing the eyeball. Humans didn’t become

the dominant species on our planet by having the most sophisticated eyeballs that

could see the most colors at the sharpest resolution (see mantis shrimp), we gnawed

our way to the top using what we were seeing. By using context of what we were

seeing, reasoning about what the signals we were observing meant. Knowing that if

we see $100 laying on the ground, that how quickly and blindly we rush towards it

should take the situation and context into account. Is it lying harmlessly near the

television set? What if it’s in the middle of a highway? What if it’s under a grand

piano attached to a rope and pulley, while the roadrunner holds on to the end of

the rope?

Don’t be the coyote. Use context.

81

Chapter 5: case-basedd Reasoning

“Any intelligent fool can make things bigger, more complex, and

more violent. It takes a touch of genius and a lot of courage to

move in the opposite direction.

–E.F. Schumacher, The Radical Humanist 1973 ”Note: Section 5 is mostly the published work of the 2018 published ICCBR

work Novel Object Discovery using Case-Based Reasoning in Section 5.1

and Convolutional Neural Networks, and the submitted 2019 ICCBR work NOD-

CC: A Hybrid CBR-CNN Architecture for Novel Object Discovery in

Section 5.2. Both works were supported by Knexus Research Corporation.

Cased based reasoning (CBR) allows us to apply the high powered algorithms

that we have available at our disposal without enormous amounts of data. Hav-

ing powerful classifiers and detectors is important, but we can do much more by

extending upon them with more traditional AI techniques such as CBR.

82

5.1 Novel Object Detection Algorithm

5.1.1 Introduction

The development of Convolutional Neural Networks (CNNs) has resulted in

significant improvements to object classification and detection in image data. One

of their primary benefits is that they learn image features rather than relying on

hand-crafted features, thereby reducing the amount of knowledge engineering that

must be performed. However, another form of knowledge engineering bias exists in

how objects are labelled in images, thereby limiting CNNs to classifying the set of

object types that have been predefined by a domain expert. We describe a case-

based method for detecting novel object types using a combination of an images

raw pixel values and detectable parts. Our approach works alongside existing CNN

architectures, thereby leveraging the state-of-the-art performance of CNNs, and

is able to detect novel classes using limited training instances. We evaluate our

approach using an existing object detection dataset and provide evidence of our

approach’s ability to classify images even if the object in the image has not been

previously encountered.

Although CNNs greatly reduce the knowledge engineering required by remov-

ing the need for hand-crafted features, they do require knowledge about the types

of objects that are present in the training images (i.e., an annotation of the object

labels). This adds significant bias based on the types of objects that are used to

annotate images. For example, an image of an office typically contains dozens of

83

visible objects but may only have labels for a small subset of those (e.g., humans,

computers, desks) and treat the others as unlabeled background (e.g., books, pen-

cils, papers). Thus, the CNN is only able to learn to classify objects that the domain

expert felt were important enough to annotate. Similarly, the level of granularity

of annotations can impact what a CNN learns. For example, the CNN will learn

differently depending on if an image of a dog is labeled as animal, dog, or as the

specific dog breed. These issues can become more significant when you have large

datasets containing thousands or millions of annotated images, since it reduces the

likelihood that a consistent annotation methodology was used on all images (e.g.,

different annotators, human error, timevarying methods of annotation). The an-

notated object types in training images restrict the potential classifications that a

CNN can make when deployed; if an object type is not annotated in the training

data, the CNN will be unable to classify that object type. For example, if a CNN is

trained with images of airplanes, boats, and houses, an image of a dog would either

be classified as one of those three object classes or not classified at all (i.e., if the

confidence was too low).

We propose a case-based approach for novel object detection that uses a com-

bination of raw pixel values and detectable object part information to identify when

input images differ noticeably from known object types. Our approach is intended

to be used in combination with existing CNN vision approaches and leverage their

state-of-the-art performance while addressing some of their limitations. More specif-

ically, our approach makes the following contributions: (1) a method to detect novel

object types without prior knowledge of those types; (2) a method to identify vari-

84

ations in images of objects of the same type; (3) an approach that can be used

in combination with existing CNN architectures; and (4) an approach that can be

used even with small datasets and a single example of each object type. We believe

the ability to operate using a small dataset is important given the large dataset

requirements that are typically required by existing Deep Learning systems.

The remainder of the Chapter outlines our case-based novel object detection

approach. Section 5.1.2 describes our method for novel object detection and how we

leverage CNNs for this task. Section 5.1.3 describes our empirical evaluation using

an existing object detection dataset. Section 5.1.4 discusses areas of future work

and concluding remarks.

5.1.2 Cased Based Reasoning

Convolutional Neutral Networks perform supervised machine learning, so their

ability to classify the presence of objects in images is directly related to the labeled

training data they have available; they cannot detect the correct object type if no

annotated training data exists with a label for that object type. If a CNN outputs

the confidence in each known class label (i.e., the output of the fully-connected

layers), it could, at best, label an input image as unknown if none of the possible

class labels were above a confidence threshold. For example, if a CNN was trained

to classify airplanes, boats, and houses, an image of a dog would either be classified

as one of the three known classes (i.e., if the CNN output a high confidence for one

of the classes) or as unknown (i.e., if none of the classes had a high confidence). If

85

several different novel objects are encountered, they would all be classified together

into the generic unknown class, even if the objects were significantly different from

each other. Returning to the example, images of dogs, books, space stations, and

humans would all be classified together as unknown. One solution would be to

retrain the CNN after each novel object type is detected. However, this is generally

impractical as CNNs require both a large number of labeled training examples (i.e.,

more than a single training instance) and significant computational time to retrain

the fully-connected layers.

We propose a case-based reasoning approach to detect the presence of novel

object types and quickly learn from limited training data. Unlike CNNs, a CBR

approach can learn using only a single training example and requires no training

time. However, our approach does not propose to remove CNNs from the object

classification process. Instead, our approach leverages the state-of-the-art perfor-

mance of CNNs while providing capabilities that alleviate some of their limitations.

For the remainder of this section we will largely present the CBR component in

isolation, but will discuss how we integrate with existing CNN architectures at the

end of this chapter.

Our CBR system encodes each image Ii as a case Ci. Each case is a triple

containing the image’s feature vector Fi, its set of observable parts Pi, and object

label li:

CI = 〈Fi, Pi, li〉 (5.1)

86

This representation assumes the availability of two functions: features and

parts. The features function converts a raw image Ii ∈ I, where I is the set of all

images, into a feature vector Fi = 〈f 1
i , ..., f

n
i 〉 ∈ F , where F is the set of all feature

vectors (features: I → F), composed of n feature values. For the features function,

we use the convolutional and pooling layers from a CNN to perform this conversion,

since they convert a raw image into a flat feature vector. This is essentially a

version of the CNN with the fully-connected layers removed such that the CNN is

only used for feature extraction. The parts function extracts a set of observable

parts Pi = {p1
i , ..., p

mi
i } ⊆ P , where P is the set of all object parts, from image

Ii. The number of observable parts in an image mi is not fixed, so the size and

contents of pi is image-specific. In this section, we consider object parts to be low-

level components that make up larger objects. For example, the parts of a dog could

include its legs, tail, torso, head, and ears. Although the object parts provide more

detail about an object, they are assumed to be generic such that the same parts can

be part of numerous object types. Returning to the dog example, many mammals

would share some or all of the same parts. However, even two instances of the

same object may have different observable parts depending on what is visible in the

image. In the dog example, the dog ’s tail may not be visible depending on where it is

facing or its legs may not be visible if the bottom of its body is occluded by another

object. The parts function requires a separate vision system that can identify these

generic object parts from visible images. However, as we will discuss later, while our

CBR approach can leverage parts information, it is not strictly necessary for case

retrieval. For example, if no parts extraction was possible, each case could contain

87

an empty set of parts (Pi = ∅) and rely only on the feature vector for retrieval. We

assume each case has a single object label li ∈ L, where L is the set of all object

labels. This assumes that each image will contain only a single object of interest.

Such an assumption is valid for uncluttered images or, more realistically, when used

as part of a Region-Based Convolutional Neural Network (R-CNN) [9]. R-CNNs use

a region proposal stage to propose subregions of the input image and then classify

those subregions individually. Thus, instead of the entire image being used as input

to the CNN, each subregion is used as a distinct input to the CNN (i.e., the CNN is

run multiple times) and each subregion is used to perform a single classification. In

our work, the images stored in cases and used as input to the CBR system could be

the image data from these subregions. Using this case representation, the feature

vector and set of parts represent the problem and the object label is the solution.

When an input image is received, either a complete image or a proposed sub-

region from an R-CNN, object classification is performed using Algorithm 4. In

addition to the input image Iin, the algorithm uses as input a case-based CB, num-

ber of nearest neighbors k, feature vector similarity threshold λf , and parts similarity

threshold λp. A description of Algorithm 4 is given here: the algorithm starts by

extracting the features and parts from the image (Line 1). If the case-based is empty

(i.e., the CBR system has no training instances), a novel object label is generated

using the generateLabel function (Line 2). We do not expect this function to gener-

ate an informative label based on knowledge of the image (e.g., dog, cat, airplane,

house) but instead a unique label for the object type (e.g., class1, class2, class3).

If the case-based is not empty, the top k most similar cases are retrieved from the

88

case-based (Line 4). The similarity only considers the feature vector similarity (e.g.,

using a similarity function based on the Euclidean distance between feature vectors),

so no parts information is considered. Cases are only added to the top k if their

similarity is above the feature vector similarity threshold λf , so it is possible for

fewer than k cases to be retrieved. In some situations, no cases will be retrieved if

none of the cases are similar to the input image (Line 5). In such a situation, the

input image is assumed to be of a novel object type so a new class label is created for

it (Line 6). The previous stages of the algorithm only considered the feature vectors

when comparing the input image to cases. The remainder of the algorithm leverages

the detectable parts information. The parts of the input image are compared to the

parts of each of the top k nearest neighbors (Lines 7-12). The similarity function

used (Line 10) is assumed to be a similarity function that calculates set similarity

(e.g., Jaccard similarity). Similar to when comparing feature vector similarity, only

cases with a parts similarity above the parts similarity threshold λp are retained

(Line 11). If there were no cases above this threshold (Line 16), the input image

is considered to be a novel object type so a novel label is generated. Otherwise,

the label from the most similar case (based on parts similarity, with feature vector

similarity used as a tiebreaker). Finally, a novel case is created and added to the

case-based (Line 14) and the object label is returned (Line 15).

An existing label is only returned when there is a case that is similar to both

the input images feature vector and its parts set. Thus, there are three situations

where a novel object label, and therefore a new object class, are created: (1) when

the case-based is empty; (2) when none of the cases have similar feature similarity;

89

Function: classify(Iin, CB, k, λf , λp) returns lin

1 Fin ← features(Iin), Pin ← parts(Iin), lin = ∅;

2 lin = (CB = ∅)?generateLabel() : None;

3 else

4 topK ← retrieveTopK(Fin, CB, k, λf);

5 if topK = ∅ then

6 lin ← generateLabel();

end

7 else

8 nn = ∅;nnSim = −1;

9 foreach Ci ∈ topK do

10 sim← partSim(Pin, Ci.Pi);

11 if sim > nnSim and sim > λp then

12 nn = Ci;nnSim = sim;

end

end

13 lin = (nn = ∅)?generateLabel() : nn.li;

end

end

14 CB ← CB ∪ 〈Fin, Pin, lin〉 ;

15 return lin;

Algorithm 4: Object Classification using image features and parts

90

and (3) when there is at least one case with similar features but none of those

cases have similar parts. As we mentioned earlier, although parts information is

used in the algorithm, it is not strictly necessary. Assuming no parts information

is available, the parts set of the input image and all cases will be empty. If the

parts similarity function is designed to return maximal similarity when comparing

two empty sets, all of the top k cases will be above λp and have an equal similarity

value. Thus, as long as the top k cases are iterated over in order of descending

feature vector similarity (Lines 9-12), the case with the most similar feature vector

similarity will be selected as the nearest neighbor and have its label returned.

One of the primary benefits of this algorithm is that it is able to learn using

only a single training instance. Once a novel class has been detected (Lines 2, 6,

or 13), it is immediately added to the case-based and can be used to classify future

input images. Similarly, this algorithm can be used even when no existing training

data exists (i.e., an initially empty case-based). For example, this algorithm could

be used from a cold-start to perform object classification without any labeled data.

At such a time when sufficient data was collected and annotated, and sufficient time

was available, a Convolutional Neural Network could be trained. Once a CNN is

trained, the CBR algorithm could run in parallel to the CNN. Assuming the fully

trained CNN has superior performance classifying known object types, the CBR

system could defer classification for known object types and only interject when a

novel class is detected or an input image is most similar to an object class that the

CNN has not been trained on (i.e., a previously detected novel class). Thus, the

CBR system can be used in situations where it has advantages over the CNN, and

91

defer in other situations.

5.1.3 Experimental Results

In this section, we evaluate the claim that our case-based reasoning system

can be used to detect and learn from novel object types. Our evaluation tests the

following hypotheses:

H1: Extracting a feature vector representation from images, using a CNN, provides

sufficient information for a CBR algorithm to differentiate between object

types.

H2: The addition of observable parts information improves object classification

performance.

H3: Our CBR approach is able to detect novel object classes and learn from de-

tected classes.

H4: Our CBR approach discovers finer-grained object classes than those provided

by the datasets human annotators.

5.1.3.1 Data Set

The dataset we use for evaluation is the publicly available PASCAL-Part

Dataset [80]. It is based on the dataset used for the Visual Object Classes Chal-

lenge 2010, a Computer Vision competition to recognize objects in realistic scenes.

While the Visual Object Classes Challenge 2010 dataset only contains the annotated

92

object types visible in each image, the PASCAL-Part Dataset contains additional

annotations for the object parts that are visible in the image. The dataset con-

tains 20 object types: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,

diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, and tv-

monitor. Each object can have between 0 (boat, chair, diningtable, sofa) and 24

(person) object parts annotated. However, images of the same object type may

have a different number of annotated parts due to object occlusion, object posi-

tioning, or annotator error. In addition to providing object part annotations, the

PASCAL-Part Dataset has several properties that make it a suitable dataset for us

to use. The images are realistic real-world images, so most images contain multi-

ple objects (including objects from the 20 annotated object types as well as other

unlabeled object types). The objects have varying locations, rotations, sizes, and

scales. Additionally, images have different backgrounds (e.g., beach, indoors, forest)

and lighting conditions. The annotated objects may be partially occluded, located

partially outside the image, or incorrectly labeled by human annotators.

Our work is focused on detecting a single object type in each image, as we

justified in the previous section, so we preprocessed the PASCAL-Part Dataset to

extract only the images with a single annotated object. However, it should be

noted that although each image only contains a single annotated object, many of

them contain multiple visible objects. The additional objects are either objects that

are not of the 20 labelled object types, or objects that have been omitted due to

annotator error. After preprocessing, 4737 images remained (from an initial dataset

size of 10,103).

93

The features function used in Algorithm 4 is a Convolutional Neural Network

using the ResNet [17] architecture (i.e., how the various layers are connected). The

CNN was pre-trained using the ImageNet dataset [7], a dataset containing hundreds

of thousands of annotated images. This was performed to learn the filters (i.e., the

image features) used by the convolutional layers of the CNN, and after training the

fully-connected layers were removed. The output of the CNN is a feature vector

of length 2048. Although ImageNet is a different dataset than the PASCAL-Part

Dataset, pretraining a CNN on ImageNet learns many general-purpose image fea-

tures (e.g., lines and shapes). Thus, it allows training a generic features function

that can be used regardless of domain, and with significantly less time and compu-

tational effort than retraining the CNN for each new image dataset. However, it

should be noted that due to the size and scope of ImageNet, there is likely some over-

lap with the objects contained in the PASCAL-Part Dataset (but none of the labels

from ImageNet are used during our evaluation). The parts function in Algorithm 4

uses the ground-truth parts annotations provided by the dataset (i.e., assumes the

presence of a perfect parts extractor). Although in real computer vision tasks the

parts would need to be extracted using a separate vision system, we used the pro-

vided parts labels in order to remove error during our initial evaluations. Future

work will examine how our CBR systems performance is influenced when parts are

extracted using a more realistic parts function. Thus, each image in the prepro-

cessed PASCAL-Part Dataset can be converted into our case representation using

the features function, parts function, and object type annotation.

94

5.1.3.2 Classification Accuracy

Our initial set of experiments aims to evaluate the ability of our CBR algo-

rithm to correctly classify the objects contained in images. More specifically, we

examine the classification performance based on what information is used during

case retrieval: feature vector only, parts only, or both feature vector and parts. Es-

sentially, these experiments look to confirm that CBR can reasonably discriminate

between the various object types and that reasonable data is contained in cases.

In the experiments, we use a variation of Algorithm 4 that does not attempt

to identify novel classes; the label from the nearest neighbor is used even if that

neighbor is dissimilar. This is achieved by using a non-empty case-based (avoiding

Algorithm 4, Line 2), and setting λf = λp = 0.0 (avoiding Algorithm 4, Lines 7

and 14). The experiments used leave-one-out testing, such that each of the 4737

cases are used as input with the remaining 4736 cases used as the case-based. The

accuracy is measured as the percentage of input cases that have a retrieved object

type that is identical to their true object type (i.e., the solution portion of the case).

The three variants we test are:

• Feature Vector Only We used k = 15 and an empty parts set for all images,

thereby only basing similarity on the feature vectors. In practice, this is iden-

tical to using k = 1 since the case with the highest feature vector similarity

will be selected given that there is no influence from parts similarity (i.e., all

cases have empty parts sets). We used k = 15 to highlight that the various

experiments were using similar parameter values.

95

• Parts Only We used k = 4736 so that the entire case-based was retrieved,

regardless of feature vector similarity. All cases contained parts information.

Thus, the most similar case is the case with the most similar parts.

• Both Feature Vector and Parts We used k = 15 and all cases contained

parts information. Thus, the most similar case is the case with the most

similar set of parts from amongst its 15-nearest neighbors (based on feature

vector similarity).

Using only a single component of the case for retrieval resulted in lower per-

formance, with a classification accuracy of 80.14% when only the feature vector is

used and 88.79% when only the parts are used. The best performance was achieved

when both the feature vector and parts were used for retrieval, with a classification

accuracy of 91.13%. These results demonstrate that using CBR with only the fea-

ture vector provides reasonable classification performance (giving support for H1)

but that performance can be increased by using both the feature vector and parts

information (giving support for H2).

5.1.3.3 Novel Class Detection

The results in the previous subsection demonstrate the ability of our approach

to be used to classify known objects in images. However, the primary motivation of

our work is to detect and learn from novel object types in images. In this experiment,

we use Algorithm 4 such that it can detect novel object types (i.e., the case-based

may be initially empty, or either λf or λp are non-zero values). The experiment

96

starts with an empty case-based, and cases are randomly removed from the dataset

and used as input to Algorithm 4. After each input, the algorithm stores a case in

its case-based using the object classification it made for the image (i.e., Algorithm 4,

Line 14). Thus, 4737 total inputs are provided to the algorithm, and after the nth

input the algorithm will have a case-based of size n. The evaluation was designed to

simulate how the CBR system would start with no knowledge (i.e., an empty case-

based) and incrementally learn based on its novel object detection capabilities. The

parameters used are k = 15, λf = 0.45, λp = 0.45. The thresholds were selected to

be relatively low such that they only exclude cases if they are significantly different

than the input image. Similarly, the k value was selected such that a neighborhood

of similar cases would be retrieved.

We use two metrics to evaluate the algorithms performance: Class Purity and

Class Count Divergence. Class Purity measures, after all 4737 input images have

been classified and added to the case-based, the percentage of images that are placed

in a class where they share a true object type with the majority of other images in

that class. Since our algorithm starts with no training data, all classes in the case-

based are novel classes learned by the algorithm. Thus, we compare whether images

with the same algorithm-generated object type classification have the same ground-

truth object type classification. For example, the algorithm would be performing

well if all images of dogs were given the same novel object classification of class10

(or any other class label, as long as all dogs were given the same label). This metric

calculates values between 0 and 1 (inclusive), with higher values being better.

Class Count Divergence measures how close the number of detected object

97

types is to the true number of objects types in the dataset. In our dataset, there

are 20 true object labels. The motivation for using the metric is to penalize creating

an unnecessarily large number of classes. For example, creating 4737 unique class

labels would result in a perfect Class Purity score but each object label would be

overfit to a single image. We use a curved function that has the maximal value

when the number of predicted classes classpred is equal to the true number of classes

classtrue and decreases as those values diverge:

Class Count Divergence =
1

(
classtrue−classpred

500
)2 + 1

(5.2)

Similar to Class Purity, Class Count Divergence calculates values between 0

and 1 (inclusive), with higher values being better. The value 500 was selected for use

in the Class Count Divergence based on the size of the dataset, such that the metric

would be below 0.50 if the number of detected classes was larger than approximately

10% of the dataset size. Additionally, we report the Overall Performance of the

algorithm as the harmonic mean of Class Purity and Class Count Divergence.

We repeated the experiment 25 times, and Table 5.1 shows a summary of the

results. Based on the Class Purity, our approach does a reasonable job detecting

novel object types and using those to classify images it encounters in the future. As a

baseline, when input images are randomly assigned to 20 object types (i.e., no novel

classes are learned), the Class Purity is 0.168. The majority of the mistakes made

by the algorithm were to provide the same label to objects that are both physically

similar and have similar parts. For example, many of the four-legged animals were

98

given the same label, especially in situations where they were small or occluded.

Overall, occlusion had a significant impact on performance since it often resulted in

very little of the object being visible (i.e., < 10%) and no parts information being

available. Even for humans, it was difficult to know that these highly obscured

objects were the objects of interest. In fact, it was often the situation that unlabeled

objects (i.e., not among the 20 annotated labels) were the most prevalent objects

in images. By examining the learned class labels, we found that our algorithm

was learning based on these unlabeled object types. However, given that the Class

Purity metric only considers the 20 annotated object types, the metric is unable

to quantify how well the algorithm was able to learn object types that were not

annotated in the dataset. Overall, these results provide support for H3.

Table 5.1: Results of novel object type detection over 25 experimental runs

Metric Mean Minimum Maximum Standard Deviation

Class Purity 0.676 0.572 0.738 0.052

Object Types 121.7 111 133 6.2

Class Count Divergence 0.960 0.951 0.968 0.005

Overall Performance 0.792 0.717 0.838 0.036

5.1.3.4 Number of Object Types

The results in Table 5.1 show that our algorithm is learning approximately six

times as many object types as are labeled in the dataset. This is reasonable per-

99

formance, considering that it would have created 4737 object types had each image

been assigned its own label, but higher than anticipated. However, our qualitative

examination of the classifications uncovered that the number of object types is not

exclusively a result of algorithm error but primarily a result of learning finer-grained

object types. For example, images annotated as pottedplant are largely divided by

our algorithm into two distinct classes: one for images of fully-grown plants and

one for seedling plants. To a human, there are clear and obvious distinctions be-

tween these two subsets of images, providing support that the algorithm learned a

meaningful subdivision. Numerous other similar examples were found where the al-

gorithm learned meaningful finer-grained object types, a selection of which include:

full-sized cars vs. go-karts (both annotated as car), people in water vs. babies vs.

athletes (all annotated as person), and locomotives vs. subway trains vs. empty

train tracks (all annotated as train). However, although a significant number of the

additional object types learned by our algorithm appear to be meaningful object

types, it also learned less meaningful single image object types. Although some

of those singleton object types are uninteresting or redundant, it learned several

interesting singleton object types based on unusual images in the dataset: a sheep

standing in a bus shelter, a train car with a picture of a dinosaur painted on it,

an alpaca (incorrectly annotated in the PASCAL-Part Dataset as sheep), and a

Ferris wheel. However, there were also situations where our algorithm erroneously

subdivided object types, or performed divisions that a human would not deem as

necessary (i.e., too fine-grained). This qualitative analysis provides partial support

for H4, but a more detailed analysis will be necessary to definitively prove that our

100

algorithm is identifying meaningful object sub-types.

5.1.4 Algorithmic Proof of Concept

This section described a method for detecting novel object types in images

using a combination of case-based reasoning and Convolutional Neural Networks.

Our approach leverages the automated feature learning and extraction provided

by CNNs while taking advantage of CBRs ability to perform incremental learning

with relatively few training instances. A set of nearest neighbors are initially re-

trieved based solely on similarity between extracted image features, with subsequent

retrieval based on the similarity between observable object parts. Although our ap-

proach leverages observable object parts during case retrieval, it can be used even

if such information is unavailable. Additionally, since CBR is an instance-based

learner, it does not abstract the object parts contained in images, thereby allowing

them to be directly used during similarity calculation. If a CNN was to include

object part information it would likely learn an abstraction of what parts exist in

a class. For example, it would learn what parts are generally observable in images

of dogs, possibly losing valuable information necessary to detect uncommon images,

like a dog with most of its observable parts obscured by a costume it is wearing.

Our evaluation was performed using realistic images from the publicly avail-

able PASCAL-Part Dataset. The initial results demonstrated the ability of a CBR

system to classify images using CNN-extracted feature vectors, and the performance

improvement provided by including object parts information during retrieval. We

101

also provided evidence of our algorithms ability to be used to detect novel object

types. Even when the algorithm had an empty initial case-based and no background

knowledge about object types, it was able to detect novel object types and use them

to classify subsequent images. One important finding of these experiments was that

the algorithm appeared to learn finer-grained object types than those provided by

the human dataset annotators, based on an initial qualitative analysis.

Several areas of future work remain. First, while we briefly discussed how our

approach could be used in parallel with a full CNN (i.e., including fully-connected

layers), we have not provided a full methodology to integrate them. In this paper,

we focused on learning without an existing dataset, so it would not be possible to

train a CNN in such a situation. However, if a subset of existing object types are

known and have sufficient data, a full CNN could be used to classify those known

types while our approach could handle novel object type detection. Second, our

approach learns a flat object type hierarchy. Future work will examine how novel

object types can be compared to existing types to determine relationships (e.g., a

fully-grown plant is similar to a seedling plant) or to provide explanations (e.g., I

think this is different than a fully-grown plant because it doesnt have any leaves).

Third, we used ground truth parts information, but future work will detect both

parts and object types. Finally, we plan to integrate our work with existing R-CNN

architectures to allow learning with images containing multiple annotated objects.

102

5.2 Hybrid CNN-CBR Architecture

Section 5.1 laid the framework for a CBR system to be used with a CNN,

but fell short of putting the hybrid architecture to usage to alleviate some of the

problems faced by deep learning. In this section we introduce a hybrid CBR-CNN

architecture for novel object discovery, and show promising experimental results

from its usage.

5.2.1 Introduction

For supervised learning techniques, the human effort required to acquire, en-

code, and label a sufficiently large dataset may add such a high cost that deploying

the algorithms is infeasible. Even if a sufficient workforce exists to create such a

dataset, the human annotators may differ in the quality, consistency, and level of

granularity of their labels. Any impact this has on the overall dataset quality will ul-

timately impact the potential performance of an algorithm trained on it. This paper

partially addresses this issue by providing an approach, called NOD-CC, for dis-

covering novel object types in images using a combination of Convolutional Neural

Networks (CNNs) and Case-Based Reasoning (CBR). The CNN component labels

instances of known object types while deferring to the CBR component to identify

and label novel, or poorly understood, object types. Thus, our approach leverages

the state-of-the-art performance of CNNs in situations where sufficient high-quality

training data exists, while minimizing its limitations in data-poor situations. We

empirically evaluate our approach on a popular computer vision dataset and show

103

significant improvements to objects classification performance when full knowledge

of potential class labels is not known in advance.

We propose a method, called Novel Object Discovery Using Convolutional Neu-

ral Networks and Case-Based Reasoning (NOD-CC), for object discovery and classi-

fication in images that leverages the high-end performance of CNNs while reducing

its reliance on large sources of pre-labeled training data. Instead, NOD-CC attempts

to classify an input image using a trained CNN, but can dynamically switch to using

a case-based classification approach if the CNN isn’t confident in its prediction. The

primary motivation of this approach is that while CNNs require a large collection

of training images of each object type to learn successfully, a CBR system can be

used to learn using as few as one training instance. Thus, the CBR component can

be used to discover novel object types and provide classification of those types until

such time as there are sufficient training examples to retrain the CNN.

In our previous work [82] (Section 5.1), we demonstrated how CBR can lever-

age the automated feature extraction capabilities of CNNs, and perform novel object

discovery and classification. In that work, which we will refer to as Novel Object

Discovery using Case-Based Reasoning (NOD-CBR), the convolutional layers of a

CNN (i.e., the CNN architecture excluding the fully-connected neural network lay-

ers) are used to convert input images into a feature vector representation. That

feature vector representation, and optionally any detectable object parts that are

visible, is used to retrieve similar cases and determine if an object of that type

has been encountered previously. NOD-CC significantly extends NOD-CBR and

provides the following key contributions:

104

• A hybrid architecture that includes both the NOD-CBR system as well as a

fully functional CNN (i.e., a CNN that performs object classification rather

than purely feature extraction).

• An architecture that provides both the high-end performance of CNNs as well

as the lazy, data-poor learning capabilities of CBR.

• A series of decision algorithms that can dynamically select whether to use the

CNN or CBR components of our architecture to perform object classification.

• An online method for object classification, novel object discovery, novel object

labeling, and learning.

• An empirical evaluation that demonstrates the utility of NOD-CC when the

full set of object types is not known in advance.

The remainder of this chapter describes how NOD-CC combines Convolutional

Neural Networks and Case-Based Reasoning to classify images while also performing

novel object discovery. Section 5.2.2 describes our hybrid architecture that combines

CNNs and CBR for object classification and discovery. Our empirical evaluation

is presented in Section 5.2.3, and provides evidence to support our claims of the

utility of NOD-CC. Finally, in Section 5.2.5 we summarize our findings and identify

important future research directions.

105

5.2.2 NOD-CC Architecture

Our approach, Novel Object Discovery Using Convolutional Neural Networks

and Case-Based Reasoning (NOD-CC), is a hybrid of two learning and classification

methods (Figure 5.1). The Convolutional Neural Network component (labeled as

CNN) is intended to classify images of object types for which sufficient training

instances are available. Additionally, it converts raw images into feature vectors for

use by the Case-Based Reasoning component (labeled as CBR). The CBR compo-

nent is intended to learn from and classify object types that are not classifiable by

the CNN. A meta-algorithm, labeled as Controller, determines whether the classifi-

cation from the CNN or CBR component is used to provide final image classification.

In the following sub-sections, we will provide details about each of the three primary

components: CNN, CBR, and Controller.

Input Image

ClassificationCBR

Classification

Parts Detector
(optional)

Controller
Classification

CNN

Extracted
Features

Parts

Figure 5.1: Architecture of the NOD-CC image classification system. The classifi-

cations are shown in green and are produced by the three decision algorithms shown

in blue. The inputs to the decision algorithms are shown in yellow, the input image

in orange, and the optional parts detector in red.

Although CNNs can achieve high accuracy when classifying objects in images,

106

their performance is dependent on the set of class labels (i.e., object types) contained

in the training data. If the training data contains images labeled with the set of

labels L = {l1, . . . , ln}, a CNN (and most other learning algorithms) will only be

able to classify those n object types. Any images of objects with a label lm (where

lm /∈ L) will either be misclassified as one of the labels in L or unclassified (i.e.,

the CNN will output a low confidence for all labels such that an unknown output

is produced). This issue is particularly problematic for CNNs since they require

a large set of example images labeled as lm before they be accurately trained to

predict that object type. CBR, on the other hand, likely does not have the same

peak classification performance on massive image datasets but is capable of one-shot

learning. Once a single image with label lm is encountered, it can be stored as a

case and reused to classify other instances of that object type.

For the CBR component of NOD-CC, we use our previous case-based novel

object discovery approach, NOD-CBR [82]. NOD-CBR stores each training image

Ii ∈ I (where I is the set of all images) as a case Ci in the case-based CB (Ci ∈ CB).

Cases are encoded as triplets containing the feature vector representation of the

image Fi, a set of detectable image parts Pi, and the ground truth object label li:

Ci = 〈Fi, Pi, li〉. Using case-based reasoning nomenclature, the feature vector and

parts set of the image are the problem, and the class label is the solution.

Recall from the previous subsection that the convolutional and pooling lay-

ers of the CNN component convert a raw input image into a feature vector Fi =

〈f1, . . . , fv〉 ∈ F (where v is an integer value defined by the CNN architecture

and F is the set of all feature vectors). Thus, both the CBR component and the

107

fully-connected layers of the CNN component use an identical feature vector repre-

sentation as produced by the convolutional and pooling layers mapping from images

to features: features : I → F .

Each case also contains the set of parts Pi ⊂ P that are detectable in the

input image, where P is the set of all parts that may be detected. These parts

are generic lower-level structures of an image, like hands, feet, wheels, or wings.

Since parts are generic, different objects types can share parts (e.g., both dogs

and cats have legs, heads, ears, tails). However, even images of the same object

type may have different detectable parts based on variations in pose, occlusion, or

photographic style. For example, in Figure 5.2, the cats do not have an identical

set of detectable parts due to different poses and image framing. Our work assumes

the presence of a parts extractor that returns the set of detected parts in an image:

parts : I → P . However, as we will discuss shortly, while our approach can leverage

parts information it is not necessary for classification (i.e., it can classify using only

the feature vector).

The NOD-CBR object discovery and classification algorithm is shown in Algo-

rithm 4. While full details of the algorithm are described in our previous work [82],

we will provide a brief overview of its reasoning process. Given an input image, the

algorithm will extract the feature vector representation (i.e., from the CNN compo-

nent) and the set of detectable parts (i.e., from the parts extractor). If the either

the case-based is empty (Line 2), no cases are sufficiently similar to the input im-

age’s feature vector representation (Lines 4-6, based on a threshold λf), or there are

cases with similar feature vectors but their detectable parts are not similar (Lines

108

Figure 5.2: The variation in pose of the two cats, as well as the framing of the

picture can drastically effect the observable parts. The cat on the left in the so-

called catloaf position is hiding his legs under his torso, and the way the picture is

framed does not show its tail, while the cat on the right has all major parts visible.

8-12, based on a threshold λp), then NOD-CBR generates a new label for the input

image. In that situation, it believes the image to be of a newly discovered object

type. Otherwise (Line 13), it uses the class label from the the most similar retrieved

case. In all situations, a new case is retained and added to the case-based (Line 14).

An advantage of this approach is that it can start from a variety of initial

case-based configurations: an empty initial case-based if no prior knowledge exists,

a case-based containing cases for all images used to train the CNN, or a sampling

of cases of each object type if the full training set is too large. It should also be

noted that while the generateLabel() function in Algorithm 4 will generate a unique

label for a newly discovered object type, it will likely not be a meaningful class label

109

(e.g., returning the label object5849 rather than lion). However, images with newly

generated labels (i.e., the newly discovered object types) could be presented to a

human expert, either online or offline, to receive more meaningful object labels.

Controller Component The CNN component and CBR component both output

a classification for the input image. However, there is no guarantee that they will

predict the same object type. The role of the controller is to receive as input the

predictions from both components and output a final predicted class label.

In our work, we use three different Controller strategies:

• Always CNN: The classification output by the CNN component is used

regardless of the the CBR component’s classification. This is equivalent to

the CNN component operating in isolation.

• Always CBR: The classification output by the CBR component is used re-

gardless of the the CNN component’s classification. This is equivalent to the

CBR component operating in isolation.

• Conditional CBR: The classification of the CNN component is used unless

the CNN has low confidence in its prediction. This occurs when none of the

class labels are above an abstention threshold λa. In situations where the CNN

does not output a class label, the prediction of the CBR component is used.

110

5.2.3 Evaluation Standard

Our empirical evaluation demonstrates the image discovery and classification

performance of NOD-CC when the complete set of object types that will be en-

countered at run-time is not known in advance. More specifically, the following

hypotheses are evaluated:

H1: The CNN component will be unable to correctly classify any object types

not present in the training set.

H2: The CBR component, NOD-CBR, will outperform the CNN component

when the training images do not contain instances of all object types that may

be encountered at run-time.

H3: NOD-CC will achieve higher classification performance than the CNN

component alone when the training images do not contain instances of all

object types that may be encountered at run-time.

H4: NOD-CC will achieve higher classification performance than NOD-CBR

alone when the training images do not contain instances of all object types

that may be encountered at run-time.

The dataset used is the same as in [82], and described in depth in Sec-

tion 5.1.3.1.

Our current work is focused on classifying a single object type in each image.

To facilitate this, we filtered the PASCAL-Part dataset to only the images that

111

contain a single class label, thereby reducing the dataset from 10, 103 images to

4, 737. While this may seem like a limitation of our approach, many computer

vision applications first propose sub-regions of a cluttered image to classify (e.g.,

the region proposal stage of a Region-Based Convolutional Neural Network [9]), and

then provide at most a single object label for each sub-region (i.e., a traditional CNN

classification). Additionally, even though each image only contains a single labeled

object, nearly all of the images contain a variety of unlabeled background objects.

Since the size of the filtered PASCAL-Part dataset is quite small by Deep Learning

standards, the CNN component used in our work, the Inception-v3 architecture,

was pretrained on the much larger Open Images v4 dataset [83] and then fine-tuned

using the filtered PASCAL-Part dataset. It should be noted that there is no overlap

between the images contained in the two datasets (i.e., pretraining on Open Images

v4 will not provide any images from the testing sets we use).

For our experiments, we used the filtered PASCAL-Part dataset to create 20

experimental datasets. The original dataset comes pre-partitioned into training and

testing sets. For each of the 20 experimental datasets, 5 of the 20 object types

were selected at random (such that no two experimental datasets used the same set

of 5 object types). All images of the 5 selected object types were removed from

the training set but left in the testing set. Thus, all testing sets contain images of

all 20 object types, but the training sets only contained images of 15 object types.

These experimental datasets were partitioned in advance, such that all experimental

variations would work on an identical set of datasets.

Section 5.1 demonstrated the ability of NOD-CBR, when starting from an

112

empty case-based, to discover and classify classes. More specifically, we evaluated

its ability to maximize class purity (i.e., provide the same generated label to images

of the same object type) while minimizing the divergence in the number of discovered

classes from the true number of classes (i.e., not over-partitioning the data). Given

that we have previously demonstrated the efficacy of NOD-CBR on these tasks,

our evaluation will measure the performance of our hybrid NOD-CC architecture’s

classification performance when class labels from the testing set are not present in

the training set (i.e., novel object types are encountered at run-time).

For each testing image provided to NOD-CC, there are four possible ways in

which the classification prediction of NOD-CC can align with the image’s ground

truth label, ordered from best to worst:

1. Correct: The class label predicted by NOD-CC matches the ground truth

class label. This is the ideal situation and is considered to be a 100% match.

C represents the percentage of training instances labeled correctly.

2. Known Novel: NOD-CC correctly predicts that the class label was not one

of the class labels in its training set. Since a random guess would correctly

predict a novel class 25% of the time (since 5 of 20 classes are not in the training

set), we consider this to be a 25% match. KN represents the percentage of

training instances labeled as known novel.

3. Abstention: NOD-CC does not have enough confidence in any of its poten-

tial predications, so it abstains from making a prediction. Since guessing a

class label randomly would provide the correct prediction approximately 5%

113

of the time (since there are 20 classes), we consider an abstention to be a

5% match. Essentially, this prevents NOD-CC from being forced to provide a

random guess to boost its accuracy and allows it to abstain when it is unsure.

A represents the percentage of training instances that were abstained from

labeling.

4. Incorrect: NOD-CC predicts a known class label (i.e., a class label present

in the training set) but it does not match the ground truth class label. This

is incorrect and considered to be a 0% match. I represents the percentage of

training instances labeled incorrectly.

During each evaluation, each image in the testing dataset is used as input

to NOD-CC and a comparison between the predicted class and ground truth class

label is used to calculate our scoring metrics: accuracy (ρA), precision (ρP), recall

(ρR), and F1 score (F1). Although the precision, recall, and F1 score calculations

use well-established equations, we use a modified accuracy function based on the

previous discussions of the four ways NOD-CC’s classification can align with the

ground truth classification.

ρA =
(C + .25×KN + .05× A)× TP

TP + FN

F1 = 2
ρP × ρR
ρP + ρR

ρP =
TP

TP + FP

ρR =
TP

TP + FN

For every class label in the dataset (all training classes unseen at training

time are considered to be of a single class labeled as Novel Class), we compute the

accuracy (ρA), precision (ρP), recall (ρR), and f-score (F1). For each experimental

114

run (i.e., providing the testing instances from a single experimental dataset to Al-

gorithm 4) the mean of each of the class-level metrics is computed. We further vary

our experiments by randomizing the order in which testing instances are provided

to Algorithm 4. This is important since it is a learning algorithm (i.e., new cases

are stored) so the order of testing instances may impact performance. For each of

the 20 experimental datasets, 20 random orderings were used. This resulted in 400

total experimental runs (20 datasets × 20 orderings) and the reported results are

the averages of the metrics over all 400 runs.

5.2.4 Experimental Results

5.2.4.1 Always CNN Variant

As a baseline, we evaluated the Always CNN variant of NOD-CC (i.e., when

the CBR component is ignored). The abstention parameter λa was determined

through cross-validation on the entire dataset, such that the F1 was maximized.

Recall that the Always CNN variant is unable to learn online; it is only able to

abstain from providing a label. Assuming a perfectly balanced set of classes, since

the CNN is only trained on 15 classes with the remainder only appearing in the

testing set, its maximum accuracy is bounded as: max(ρA) = (15
20
× 100%) + (5

20
×

5%) = 76.3%. In reality, due to the imbalance of the datasets the true maximum

accuracy was lower - 63.9% in our experiments. We report an additional metric,

Relative Mean Accuracy (RMA), that measures the fraction of max(ρA) that was

achieved. We also report the minimum (Min. ρA), maximum (Max. ρA), median

115

(Med. ρA) and standard deviation (σ ρA) of the accuracy (i.e., when examining

each experimental run individually). The performance of Always CNN is shown

in Table 5.2.

Table 5.2: Performance of the various NOD-CC configurations

Variant ρA ρP ρR F1 RMA Min. ρA Max. ρA Med. ρA σ ρA

Always CNN 42.99 61.31 37.98 44.32 67.27 25.98 61.27 41.80 9.15

Always CBR

w/ Parts

58.45 54.30 59.66 56.18 81.70 43.49 68.93 61.33 6.57

Always CBR

w/o Parts

49.82 49.77 49.41 48.21 69.67 37.49 63.44 59.78 7.27

Conditional

CBR

w/ Parts

59.90 56.52 60.98 58.17 83.77 54.00 64.12 60.35 2.66

Conditional

CBR

w/o Parts

53.73 51.39 53.75 52.44 75.15 49.84 61.91 55.23 2.67

One item of note in these baseline results is that the precision is significantly

higher than the recall. This is intuitive in a system that uses a threshold to determine

confidence in classifications (i.e., λa); the system only provides classifications when

it is confident in its predictions and thereby lowers the number of false positives. In

these results, as expected, the Always CNN approach is never able to correctly

116

label unknown classes, providing evidence to support H1.

5.2.4.2 Always CBR Variant

As an additional control, we use the Always CBR variant of NOD-CC (i.e., the

CNN always abstains, so only CBR is used). This variant was evaluated both with

observable parts information (i.e., a parts detector component was available) and

without. When parts are not available, Algorithm 4 only uses the image features

during retrieval. For these experiments, the CBR component was initially given a

case-based containing all training instances.

Always CBR has a higher theoretical maximum accuracy than Always

CNN because it has the ability to label an image as a novel class rather than

abstaining: max(ρA) = (15
20
× 100%) + (5

20
× 25%) = 81.3%. Based on the class im-

balance of the datasets, the true maximum accuracy was determined to be 71.5%.

Similar to with Always CNN, this was used to calculate the RMA. The results are

shown in Table 5.2.

Although the availability of detectable object part information is beneficial,

Always CBR is able to outperform Always CNN even without parts. The only

metric Always CNN performs better on is precision. As we mentioned previously,

this is a result of the CNN algorithm being able to abstain, thereby lowering its

false positive rate. Overall, the results demonstrate the benefits CBR can provide

when the full set of object classes is not known in advance. Even considering the

performance of these approaches relative to their maximum accuracy (i.e., RMA),

117

Always CBR still outperforms Always CNN. These results provide evidence to

support H2.

5.2.4.3 Conditional CBR Variant

In this variant, we use both the CBR and CNN components (i.e., our full ar-

chitecture). As described previously, the classification from the CNN is used unless

the CNN abstains. If the CNN does abstain, the CBR component is used for clas-

sification. We use the same configurations (i.e., λa threshold and initial case-based)

for the CNN and CBR components as described in the previous experiments. Sim-

ilar to the Always CBR variant, we evaluate the Conditional CBR both with

and without parts information. The results are shown in Table 5.2. Across all

metrics, except precision, both variants of Conditional CBR outperform Always

CNN. This demonstrates that the ability of CBR to dynamically detect and learn

from previously unseen class types provides significant benefit to the CNN compo-

nent. In situations where the CNN abstains, the CBR component is able to provide

assistance. This provides support for H3.

When comparing Always CBR to Conditional CBR, the Conditional

CBR variants outperform across all five core metrics (accuracy, precision, recall, f-

score, and RMA). This includes both the variants that use parts information as well

as those that do not. The results show that the Conditional CBR performance

has fewer extreme results (i.e., minimums and maximums closer to the mean) and

significantly lower standard deviation. This is beneficial because it provides both

118

improved performance as well as less uncertainty about the potential performance

on an unknown dataset. Additionally, these results demonstrate the combination

of both the CNN and CBR components are necessary for maximum performance;

neither module is sufficient for novel object discovery on their own. These results

provide support for H4.

5.2.5 CBR applications

In this section, I described NOD-CC, a hybrid architecture that uses Case-

Based Reasoning and Convolutional Neural Networks to discover novel object types

during the image classification process. NOD-CC leverages the automated feature

extraction and image classification performance of CNNs while minimizing their re-

quirement for large, pre-labeled training datasets by using CBR’s instance-based

learning capabilities. NOD-CC can be used with any CNN implementation so it

is not tied to a specific CNN architecture, training methodology, or parameter se-

lection. This is particularly important given the rapid advancement in the field of

CNNs.

Additionally, NOD-CC can use detected object parts to further improve its

performance, although it performs well even if such additional information is un-

available. We evaluated our approach on a publicly available image dataset and

showed NOD-CC had improved performance over a CNN or CBR module alone.

Our results demonstrated that NOD-CC was able to discover previously unknown

classes of objects (i.e., not represented in training data), learn from a single instance

119

of the novel object type, and classify future instances of those objects. Additionally,

NOD-CC performed these tasks without compromising the discriminatory power of

the CNN.

Future work will involve using the WordNet hierarchy in conjunction with the

hierarchical multi-class capabilities afforded by Inception-style architectures in order

to perform hierarchical clustering of classes. Thus, a novel class could be placed in

a hierarchy relative to known classes, possibly revealing a parent-child relationship.

For example, if an image dataset contained labeled images of balloons and baskets, it

could be learned that they are related to a newly discovered object type, an image

of a hot air balloon. Similarly, textual relations between the known class labels

could be used to generate a more semantically meaningful label for the novel object

type (e.g., balloon basket). We also wish to investigate additional methods for using

CBR for classification. Even in our dynamic approach described in this paper, we

set an abstaining threshold λa for detection to be used unilaterally across all classes.

There is an intuitive reason to believe that a CBR system (i.e., a meta-algorithm)

for determining when to deploy a second CBR system (i.e., an image classifier) may

be useful in this effort.

120

Chapter 6: Conclusion and Future Work

“The best minds of my generation are thinking about how to

make people click ads...that sucks.

–Jeff Hammerbacher, Bloomberg Businessweek, 2017. ”This work is in no means a complete study of computational context and it’s

usages in computer vision; I can’t even say that I know how much I don’t know on

this topic.

Possible future work (Figure 6.1) includes the following:

• Temporal Context- The usage of videos is an obvious extension, where based

on what we had seen in the video before (and backwards if we are using a

bidirectional system) could influence what we think we are seeing now. Similar

to the SPARCNN work above, this could be leveraged to learn from our past

experience in videos in order to predict future sequences. Imagine a system

that was trained on horror films that began to recognize scenes where the

killer is about to jump out before it happens, or a network trained on videos

of hockey where the system can start predicting the puck in the net before

it happens based on the sequences of movement it had seen before, and the

121

Figure 6.1: I’ve been in graduate school for 7 years, and I work in private industry.

Credit to Jorge Cham at www.phdcomics.com.

position of players.

• Hierarchical Grouping- Using the novel object discovery algorithms of Chapter

5, it is possible to build relational networks of objects relationship to each other

in the real world based upon the observable parts included in the objects as

well as the feature vectors extracted from the networks.

• Multiple Object Contextual Scenes- Although the SPARCNN work dealt with

object corelations, and the NTP work dealt with non object correlations, we

are yet to fuse the two systems together into an integrated system that is able

to use information from other objects in the image and background.

• Multiple Novel Object discoveries- In the novel object explorative domain, we

122

do not at the current time use more than one object to simplify the study,

and focus on discovery based on the target pixels. In future work we can also

leverage information from other objects present in the image (or even NTPs) to

create more complex cases for a more interesting form of novel object discovery.

123

Appendix A: Appendix A: Pascal Parts Dataset Composition

Class Label: sheep (551 instances)

Part(65.34 %): muzzle, x̄, σ,min,max: 0.65, 0.48, 0, 1

Part(85.84 %): head, x̄, σ,min,max: 0.86, 0.35, 0, 1

Part(23.59 %): leg4, x̄, σ,min,max: 0.71, 1.36, 0, 4

Part(8.89 %): horn, x̄, σ,min,max: 0.15, 0.50, 0, 2

Part(27.95 %): tail, x̄, σ,min,max: 0.28, 0.45, 0, 1

Part(91.83 %): torso, x̄, σ,min,max: 0.92, 0.27, 0, 1

Class Label: bottle (776 instances)

Part(98.84 %): body, x̄, σ,min,max: 0.99, 0.11, 0, 1

Part(86.47 %): cap, x̄, σ,min,max: 0.86, 0.34, 0, 1

Class Label: horse (451 instances)

Part(99.11 %): torso, x̄, σ,min,max: 0.99, 0.09, 0, 1

Part(94.68 %): head, x̄, σ,min,max: 0.95, 0.22, 0, 1

Part(85.59 %): leg4, x̄, σ,min,max: 2.84, 1.46, 0, 4

Part(56.10 %): tail, x̄, σ,min,max: 0.56, 0.50, 0, 1

Class Label: bicycle (450 instances)

Part(97.11 %): wheel, x̄, σ,min,max: 1.76, 0.49, 0, 2

124

Part(65.56 %): chainwheel, x̄, σ,min,max: 0.66, 0.48, 0, 1

Part(89.33 %): handlebar, x̄, σ,min,max: 0.89, 0.31, 0, 1

Part(66.44 %): saddle, x̄, σ,min,max: 0.66, 0.47, 0, 1

Class Label: motorbike (457 instances)

Part(93.87 %): wheel, x̄, σ,min,max: 1.61, 0.60, 0, 2

Part(44.42 %): headlight, x̄, σ,min,max: 0.50, 0.62, 0, 3

Part(5.03 %): handlebar, x̄, σ,min,max: 0.05, 0.22, 0, 1

Part(1.97 %): saddle, x̄, σ,min,max: 0.02, 0.14, 0, 1

Class Label: cow (317 instances)

Part(70.98 %): muzzle, x̄, σ,min,max: 0.71, 0.45, 0, 1

Part(83.60 %): head, x̄, σ,min,max: 0.84, 0.37, 0, 1

Part(66.88 %): leg4, x̄, σ,min,max: 2.02, 1.66, 0, 4

Part(21.14 %): horn, x̄, σ,min,max: 0.37, 0.75, 0, 2

Part(21.45 %): tail, x̄, σ,min,max: 0.21, 0.41, 0, 1

Part(87.38 %): torso, x̄, σ,min,max: 0.87, 0.33, 0, 1

Class Label: sofa (397 instances)

Class Label: tvmonitor (545 instances)

Part(91.01 %): screen, x̄, σ,min,max: 0.91, 0.29, 0, 1

Class Label: dog (1058 instances)

Part(96.31 %): torso, x̄, σ,min,max: 0.96, 0.19, 0, 1

Part(98.11 %): head, x̄, σ,min,max: 0.98, 0.14, 0, 1

Part(80.25 %): leg4, x̄, σ,min,max: 2.28, 1.42, 0, 4

Part(39.60 %): tail, x̄, σ,min,max: 0.40, 0.49, 0, 1

125

Class Label: bus (370 instances)

Part(81.08 %): wheel, x̄, σ,min,max: 1.77, 1.14, 0, 5

Part(33.51 %): door, x̄, σ,min,max: 0.45, 0.72, 0, 4

Part(44.86 %): fliplate, x̄, σ,min,max: 0.45, 0.50, 0, 1

Part(61.89 %): headlight, x̄, σ,min,max: 1.53, 1.67, 0, 8

Part(17.30 %): back, x̄, σ,min,max: 0.17, 0.38, 0, 1

Part(6.76 %): roof, x̄, σ,min,max: 0.07, 0.25, 0, 1

Part(94.86 %): window, x̄, σ,min,max: 3.32, 2.68, 0, 19

Part(68.38 %): mirror, x̄, σ,min,max: 1.05, 0.83, 0, 2

Part(67.03 %): front, x̄, σ,min,max: 0.67, 0.47, 0, 1

Part(6.22 %): bliplate, x̄, σ,min,max: 0.06, 0.24, 0, 1

Part(86.22 %): side, x̄, σ,min,max: 0.86, 0.34, 0, 1

Class Label: cat (834 instances)

Part(96.64 %): torso, x̄, σ,min,max: 0.97, 0.18, 0, 1

Part(98.92 %): head, x̄, σ,min,max: 0.99, 0.10, 0, 1

Part(77.46 %): leg4, x̄, σ,min,max: 1.86, 1.36, 0, 4

Part(41.97 %): tail, x̄, σ,min,max: 0.42, 0.49, 0, 1

Class Label: person (5935 instances)

Part(94.44 %): head, x̄, σ,min,max: 0.94, 0.23, 0, 1

Part(94.63 %): torso, x̄, σ,min,max: 0.95, 0.23, 0, 1

Part(59.55 %): leg2, x̄, σ,min,max: 1.04, 0.92, 0, 2

Part(87.01 %): arm, x̄, σ,min,max: 1.43, 0.71, 0, 2

Class Label: train (379 instances)

126

Part(67.55 %): head, x̄, σ,min,max: 0.68, 0.47, 0, 1

Part(67.81 %): coach, x̄, σ,min,max: 1.17, 1.26, 0, 9

Part(53.83 %): headlight, x̄, σ,min,max: 1.16, 1.27, 0, 5

Part(2.37 %): back, x̄, σ,min,max: 0.02, 0.15, 0, 1

Part(14.25 %): roof, x̄, σ,min,max: 0.22, 0.65, 0, 4

Part(59.10 %): front, x̄, σ,min,max: 0.69, 0.76, 0, 9

Part(68.60 %): side, x̄, σ,min,max: 1.26, 1.32, 0, 10

Class Label: aeroplane (549 instances)

Part(96.36 %): body, x̄, σ,min,max: 0.96, 0.19, 0, 1

Part(51.91 %): wheel, x̄, σ,min,max: 1.38, 1.66, 0, 8

Part(52.09 %): engine, x̄, σ,min,max: 0.93, 1.10, 0, 6

Part(0.18 %): tail, x̄, σ,min,max: 0.00, 0.04, 0, 1

Part(87.98 %): stern, x̄, σ,min,max: 0.88, 0.33, 0, 1

Part(84.15 %): wing, x̄, σ,min,max: 1.35, 0.74, 0, 2

Class Label: car (1337 instances)

Part(73.37 %): wheel, x̄, σ,min,max: 1.33, 1.05, 0, 5

Part(25.43 %): door, x̄, σ,min,max: 0.36, 0.66, 0, 3

Part(16.68 %): fliplate, x̄, σ,min,max: 0.17, 0.37, 0, 1

Part(34.18 %): headlight, x̄, σ,min,max: 0.56, 0.91, 0, 6

Part(34.55 %): back, x̄, σ,min,max: 0.35, 0.48, 0, 1

Part(16.60 %): roof, x̄, σ,min,max: 0.17, 0.37, 0, 1

Part(77.64 %): window, x̄, σ,min,max: 1.39, 1.08, 0, 7

Part(48.32 %): mirror, x̄, σ,min,max: 0.60, 0.68, 0, 2

127

Part(45.62 %): front, x̄, σ,min,max: 0.46, 0.50, 0, 1

Part(16.08 %): bliplate, x̄, σ,min,max: 0.16, 0.37, 0, 1

Part(80.25 %): side, x̄, σ,min,max: 0.80, 0.40, 0, 2

Class Label: pottedplant (617 instances)

Part(92.87 %): pot, x̄, σ,min,max: 0.93, 0.26, 0, 1

Part(98.87 %): plant, x̄, σ,min,max: 0.99, 0.11, 0, 1

Class Label: table (480 instances)

Class Label: chair (1793 instances)

Class Label: bird (724 instances)

Part(91.71 %): head, x̄, σ,min,max: 0.92, 0.28, 0, 1

Part(68.23 %): tail, x̄, σ,min,max: 0.68, 0.47, 0, 1

Part(74.86 %): beak, x̄, σ,min,max: 0.75, 0.43, 0, 1

Part(56.49 %): leg2, x̄, σ,min,max: 0.97, 0.91, 0, 2

Part(95.17 %): torso, x̄, σ,min,max: 0.95, 0.21, 0, 1

Part(35.50 %): wing, x̄, σ,min,max: 0.57, 0.82, 0, 2

Class Label: boat (594 instances)

128

Bibliography

[1] JT Turner, Adam Page, Tinoosh Mohsenin, and Tim Oates. Deep belief net-
works used on high resolution multichannel electroencephalography data for
seizure detection. 2014.

[2] JT Turner, Kalyan Moy Gupta, and David Aha. Sparcnn: Spatially related
convolutional neural networks. In Applied Imagery Pattern Recognition Work-
shop (AIPR), 2016 IEEE, pages 1–6. IEEE, 2016.

[3] Lawrence Roberts. Machine Perception of Three-Dimensional Solids. 01 1963.

[4] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recog-
nition with visual attention. arXiv preprint arXiv:1412.7755, 2014.

[5] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning.

[6] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

129

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[11] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object propos-
als from edges. In European Conference on Computer Vision, pages 391–405.
Springer, 2014.

[12] J. T. Turner, Kalyan Moy Gupta, Brendan Morris, and David W. Aha. Key-
point density-based region proposal for fine-grained object detection and clas-
sification using regions with convolutional neural network features. CoRR,
abs/1603.00502, 2016.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
arXiv preprint arXiv:1703.06870, 2017.

[15] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research, 15(1):1929–1958, 2014.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning, pages 448–456, 2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[18] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Tor-
ralba. Sun database: Large-scale scene recognition from abbey to zoo. In
Computer vision and pattern recognition (CVPR), 2010 IEEE conference on,
pages 3485–3492. IEEE, 2010.

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In European conference on computer vision, pages 740–755.
Springer, 2014.

[20] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303–338, 2010.

[21] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Per-
ona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California
Institute of Technology, 2010.

130

[22] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun,
and Alan Yuille. Detect what you can: Detecting and representing objects
using holistic models and body parts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1971–1978, 2014.

[23] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154–171, 2013.

[24] Seymour A Papert. The summer vision project. 1966.

[25] David G Lowe. Three-dimensional object recognition from single two-
dimensional images. Artificial intelligence, 31(3):355–395, 1987.

[26] Olivier D Faugeras and Martial Hebert. The representation, recognition, and
locating of 3-d objects. The international journal of robotics research, 5(3):27–
52, 1986.

[27] W Eric L Grimson and Tomas Lozano-Perez. Model-based recognition and
localization from sparse range or tactile data. The international journal of
robotics research, 3(3):3–35, 1984.

[28] Daniel P Huttenlocher and Shimon Ullman. Recognizing solid objects by align-
ment with an image. International Journal of Computer Vision, 5(2):195–212,
1990.

[29] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[30] Michael J Swain and Dana H Ballard. Color indexing. International journal of
computer vision, 7(1):11–32, 1991.

[31] Peter N Belhumeur, João P Hespanha, and David J Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, (7):711–720, 1997.

[32] Hiroshi Murase and Shree K Nayar. Visual learning and recognition of 3-d
objects from appearance. International journal of computer vision, 14(1):5–24,
1995.

[33] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

131

[35] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.

[37] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1492–1500,
2017.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[39] Sean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross B. Girshick. Inside-
outside net: Detecting objects in context with skip pooling and recurrent neural
networks. CoRR, abs/1512.04143, 2015.

[40] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize
recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941,
2015.

[41] JT Turner, Kalyan Gupta, Brendan Morris, and David W Aha. Keypoint
density-based region proposal for fine-grained object detection and classifica-
tion using regions with convolutional neural network features. arXiv preprint
arXiv:1603.00502, 2016.

[42] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. In Advances in neural information processing systems, pages 2204–
2212, 2014.

[43] Sadiq Sani, Nirmalie Wiratunga, and Stewart Massie. Learning deep features
for knn-based human activity recognition. 2017.

[44] Kyle Martin, Nirmalie Wiratunga, Sadiq Sani, Stewart Massie, and Jérémie
Clos. A convolutional siamese network for developing similarity knowledge in
the selfback dataset. 2017.

[45] Kazjon Grace, Mary Lou Maher, David C Wilson, and Nadia A Najjar. Combin-
ing cbr and deep learning to generate surprising recipe designs. In International
Conference on Case-Based Reasoning, pages 154–169. Springer, 2016.

[46] Petra Perner, Alec Holt, and Michael Richter. Image processing in case-based
reasoning. Knowledge Eng. Review, 20:311–314, 09 2005.

132

[47] Robert T Macura and Katarzyna J Macura. Macrad: Radiology image resource
with a case-based retrieval system. In International Conference on Case-Based
Reasoning, pages 43–54. Springer, 1995.

[48] Mojgan Haddad, Klaus-Peter Adlassnig, and Gerold Porenta. Feasibility anal-
ysis of a case-based reasoning system for automated detection of coronary
heart disease from myocardial scintigrams. Artificial Intelligence in Medicine,
9(1):61–78, 1997.

[49] Gowri Allampalli-Nagaraj and Isabelle Bichindaritz. Automatic semantic in-
dexing of medical images using a web ontology language for case-based image
retrieval. Engineering Applications of Artificial Intelligence, 22(1):18–25, 2009.

[50] Petra Perner and Angela Bühring. Case-based object recognition. In European
Conference on Case-Based Reasoning, pages 375–388. Springer, 2004.

[51] Alessandro Micarelli, Alessandro Neri, and Giuseppe Sansonetti. A case-based
approach to image recognition. pages 443–454, 09 2000.

[52] Daniel López-Sánchez, Juan M Corchado, and Angélica González Arrieta. A
cbr system for efficient face recognition under partial occlusion. In International
Conference on Case-Based Reasoning, pages 170–184. Springer, 2017.

[53] Tinne Tuytelaars, Christoph H Lampert, Matthew B Blaschko, and Wray Bun-
tine. Unsupervised object discovery: A comparison. International journal of
computer vision, 88(2):284–302, 2010.

[54] Jun-Yan Zhu, Jiajun Wu, Yan Xu, Eric Chang, and Zhuowen Tu. Unsuper-
vised object class discovery via saliency-guided multiple class learning. IEEE
transactions on pattern analysis and machine intelligence, 37(4):862–875, 2015.

[55] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Enriching visual knowl-
edge bases via object discovery and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2027–2034, 2014.

[56] Bryant Aaron, Dan E Tamir, Naphtali D Rishe, and Abraham Kandel. Dy-
namic incremental k-means clustering. In 2014 International Conference on
Computational Science and Computational Intelligence, volume 1, pages 308–
313. IEEE, 2014.

[57] James MacQueen et al. Some methods for classification and analysis of multi-
variate observations. 1967.

[58] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[59] Philip Wolfe. Note on a method of conjugate subgradients for minimizing
nondifferentiable functions. Mathematical Programming, 7(1):380–383, 1974.

133

[60] Marvin Minsky and Seymour Papert. Perceptrons - an introduction to compu-
tational geometry. MIT Press, 1987.

[61] J.T. Turner. Time Series Analysis Using Deep Feedforward Neural Networks.
2014.

[62] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltz-
mann machines for collaborative filtering. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 791–798. ACM, 2007.

[63] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[64] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE trans-
actions on pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[65] Christoph Goring, Erik Rodner, Alexander Freytag, and Joachim Denzler. Non-
parametric part transfer for fine-grained recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2489–2496,
2014.

[66] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Be-
longie. The caltech-ucsd birds-200-2011 dataset. 2011.

[67] Brendan Morris, David W Aha, Bryan Auslander, and Kalyan Gupta. Learning
and leveraging context for maritime threat analysis: Vessel classification using
exemplar-svm. Technical report, NAVAL RESEARCH LAB WASHINGTON
DC NAVY CENTER FOR APPLIED RESEARCH IN , 2012.

[68] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[69] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International Journal of Com-
puter Vision, 88(2):303–338, June 2010.

[70] Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff,
Peng Wang, and Hartwig Adam. Masklab: Instance segmentation by refining
object detection with semantic and direction features. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4013–
4022, 2018.

134

[71] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[72] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw,
Joseph R Ledsam, Klaus Maier-Hein, SM Ali Eslami, Danilo Jimenez Rezende,
and Olaf Ronneberger. A probabilistic u-net for segmentation of ambiguous
images. In Advances in Neural Information Processing Systems, pages 6965–
6975, 2018.

[73] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[74] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[75] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature pyramid networks for object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2117–2125, 2017.

[76] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[77] Jiang Liu, Chenqiang Gao, Deyu Meng, and Wangmeng Zuo. Two-stream
contextualized cnn for fine-grained image classification. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[78] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[79] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[80] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun,
and Alan Yuille. Detect what you can: Detecting and representing objects using
holistic models and body parts. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[81] Yann LeCun, Sumit Chopra, and Raia Hadsell. A tutorial on energy-based
learning. 2006.

135

[82] J. T. Turner, Michael W. Floyd, Kalyan Moy Gupta, and David W. Aha. Novel
object discovery using case-based reasoning and convolutional neural networks.
In Michael T. Cox, Peter Funk, and Shahina Begum, editors, Case-Based Rea-
soning Research and Development, pages 399–414, Cham, 2018. Springer Inter-
national Publishing.

[83] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom
Duerig, et al. The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale. arXiv preprint
arXiv:1811.00982, 2018.

136

