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Abstract

Personalized health monitoring is slowly becoming a reality
due to advances in small, high-fidelity sensors, low-power pro-
cessors, as well as energy harvesting techniques. The ability to
efficiently and effectively process this data and extract useful
information is of the utmost importance. In this paper, we aim
at dealing with this challenge for the application of automated
seizure detection. We explore the use of a variety of represen-
tations and machine learning algorithms to the particular task
of seizure detection in high-resolution, multi-channel EEG
data. In doing so, we explore the classification accuracy, com-
putational complexity and memory requirements with a view
toward understanding which approaches are most suitable. In
particular, we show that layered learning approaches such as
Deep Belief Networks excel along these dimensions.

Introduction
Personalized health care depends crucially on large volumes
of data about both individuals and populations. It is easy to
imagine a near future in which it is common to wear a number
of bio-sensors that continuously monitor various aspects of
our physiological state, including heart rate, blood pressure,
eye movement, brain activity, and many others. There are
two aspects of this enterprise - gathering the data and doing
something useful with it.

Our starting point is the data, and we ask how it is possible
to efficiently and accurately extract information from it for
purposes of identifying health states. This leads to the related
issues of how to represent large volumes of medical time
series so that the information they carry about health state is
exposed, and what algorithms are best to extract that infor-
mation. In this paper we focus on these issues in the context
of seizure detection. In a clinical setting, electroencephalog-
raphy (EEG) can be used to survey electrical activity in the
brain, which can be used to diagnose and monitor abnormal
brain functioning. EEGs are often used to diagnose certain
neurological conditions such as seizures. Automated seizure
detection is still a difficult task, and often produces false pos-
itives. In their current state, EEG monitoring devices are not
accurate enough for usage in a clinical setting.

Time series are an appropriate model for this problem be-
cause of the nature of waveform data collected from an EEG.
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Figure 1: Examples of classification of a test vector using
k-nearest neighbor (KNN), support vector machine (SVM),
and logistic regression (LR), respectively

While the data is often shown as continuous wave forms, the
data that is received by the machine itself is many discrete
electrical readings measured in millivolts (mV). Depending
on the design of the actual system itself, the number of read-
ings per second (Hz) varies (the high resolution clinical EEG
that is used in the experiment measures at 256 Hz), making
time series analysis techniques appropriate for the task.

In this study we consider the problem of detecting whether
a patient is having a seizure or not based upon the patients
EEG readings for any given second, and how those readings
differ from a baseline that is standardized from either the
patients EEG history or other patients EEG readings.

Background and Related Work

Time series are prevalent in diverse domains such as finance,
medicine, industrial process control, and meteorology. One
widely used technique for representing time series is Sym-
bolic Aggregate approXimation (SAX), which converts real-
valued data to a sequence of symbols (Lin et al. 2007).

More recently, deep learning has shown great promise in
tasks such as robotic vision and data mining (Bengio 2009).

With the use of graphics processing units (GPUs) it is
possible to train deep artificial neural networks in a layer
wise fashion to tackle problems that previously required dis-
cretization. In the remainder of this section we introduce
terminology, review the deep learning methods used in this
work, and discuss related work in the domain of seizure de-
tection using machine learning.
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Classifiers used in this work
Three classifiers are used in this work to compare the detec-
tion accuracy and complexity requirements. These classifiers
are: k-nearest neighbor (KNN) with 3, 5, and 7 neighbors,
support vector machines (SVM) with sigmoid, radial basis
function, and polynomial kernels, and logistic regression
(LR). Figure 1 shows a schematic description of these three
classifiers.

Deep Neural Networks
Two kinds of deep neural networks are used for this study-
stacked denoising autoencoders (SdA) and a deep belief net-
work (DBN). Both of these methods stochastically induce
noise through modification of the input signals. The SdA
randomly corrupts a small fraction of the input (which is
given in the input space [0,1]) by setting it to 0. Deep belief
networks are also given input between [0,1], and used as a
probability input for a binomial function to reconstruct the
data as binary points. This is a large oversimplification, and
more can be read about it by Yoshua Bengio (Bengio et al.
2007).

Related Work
This study builds upon previous studies in the area of seizure
detection, deep belief networks, and time series analysis of
high resolution medical data.

In a study by Wulsin (Wulsin et al. 2011), deep belief
networks were also used for analysis of data obtained from
an EEG. The feature set that we chose to use was borrowed
from a larger set of features used in a study that attempted to
classify anomalous EEG features such as GPED, PLED, or
eye blinks.

There has recently been a number of studies for seizure de-
tection using frequency and timing analysis of EEG datasets
(Bisasky, Chandler, and Mohsenin 2012) (Chandler, Bisasky,
and Mohsenin 2011) (Yoo et al. 2013). A particularly useful
study by Shoeb and Guttag used the same dataset of seizure
patients that were being monitored by high resolution EEGs
after being withdrawn from anti-seizure medications (Shoeb
2009). Although using the same dataset, the Shoeb study
extracted a different feature set and used a support vector
machine as the binary classifier, as opposed to a deep belief
network. Furthermore, in this study, the seizure progression
was not interrupted, and statistics were kept on not only the
accuracy of seizures detected, but the amount of time that was
taken to detect the seizures by the support vector machine.

A final study by Oates et al. (Oates et al. 2012) motivated
this study and paper. The paper did not study seizure detec-
tion, rather traumatic brain injury outcomes. The Oates study
investigated time series of high resolution medical data as
well, however the data in this study was pulse rate, and SpO2

levels. The study used a Bag of Patterns approach to pre-
process data to be used in 1NN clustering to classify early
outcome predictions of patients with traumatic brain injuries.

Method and Approach
Because using the raw signal input as the input to the deep
belief network or classifiers does not allow for the algorithm

3DWLHQW�,'

)�
0
HD
VX
UH
��

Figure 2: Single EEG channel seizure detection F measure
plotted against ensemble method where 4 channels must
indicate seizure to be detected.

to properly abstract from the raw data, certain features of the
dataset are derived from the raw time series signal. Because
a trained human can look at the EEG wave pattern and de-
termine whether or not a seizure is occurring with close to
perfect accuracy, many of the features extracted are visible
features of the time series such as area under curve, or varia-
tion of peaks. The following features were used for detection
of anomalous EEG features in the Wulsin study (Wulsin et
al. 2011). The formulas for the features can be found in the
Wulsin paper. They are area under wave, normalized decay,
line length, mean energy, average peak amplitude, average
valley amplitude, peak variation, and root mean square. These
9 features were standardized and normalized for the 23 chan-
nels for an input size of 207. In the raw data experiment, the
256 readings per second for the 23 channels were standard-
ized and normalized for an input size of 5888.

Results and Analysis
We used two different approaches to investigate the seizure
detection accuracy. Part 1 which uses simple features extrac-
tion followed by three different classifiers: SVM, KNN and
LR. Part 2 uses simple features extraction followed by DBN
and a classifier, which is logistic regression in this case. Be-
fore either part, raw data is run through the SdA algorithm
as a demonstration of a way of ensembling together multiple
channels of EEG data.

This serves as a justification for using multiple channels of
data to determine the classification of one second, as opposed
to only one channel. It also reveals the nature of the seizures
being studied in that the seizures are not occurring globally
across all 23 channels but may be focal (present in limited
areas of the brain).

In addition, two different methods of classification tasks
were done on the data. In one study the same patient was
used for both training, validation, and testing sets. This led to
a much smaller corpus, but had very good results. The second
study involved using all of the other nine patients with data
for training and validation sets, and then using one patient
at a time for a testing set. This allowed for a much larger
corpus for training and testing, but did not produce results
as high as the first study. In every study, precision, recall,
and F-Measure (F1) metrics were used to determine accuracy
since the majority of patient data (85 -99 %) consisted of
normal EEG.
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Figure 3: Comparison of different classifiers when single
patient data is used for training and test.
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Figure 4: Comparison of different classifiers when other pa-
tients data are used for training.

Part 1: Simple Feature to Classifiers Comparison
F1 and accuracy measurements In the first study, the
training, validation, and testing sets were all drawn from
the same patient. The fraction of total seconds to each of
the sets are as follows: 71.4% training set, 14.2% validation
set, 14.2% testing set. These fractions are derived from the
MNIST digit classification method of using a 5:1:1 ratio.

The bar plots in Fig. 3 show the F1 comparison between
classifiers when single patient data is used for training and
test.

In the second study, the training and validation sets were
split amongst all of the seizure and non seizure seconds from
the nine patients not being tested on, using a 4:1 ratio. For
the test patient, all of his seizure and non seizure seconds
were used in the testing set (since no training or validation
was done on the test patient). The bar plots in Fig. 4 show the
F1 comparison between classifiers when the patient data is
left out for training and is used for testing.

Computational and memory complexity requirements
Besides the ability for the classifiers to accurately predict
seizures, it is also necessary for the classifiers to minimize
complexity since they will be running on a low-power, em-
bedded sensor device in an ambulatory setting. Since the
device can be trained offline, the complexity comes in the
form of memory required to store the classifier model and
computation required to classify an incoming test vector. Ta-
ble 1 summarizes the memory and computational complexity
for each of the classifiers. The memory and computation
required for all the simple features is denoted as SF. Also
included in the table is condensed nearest neighbor, CNN.
CNN is an optimization applied to KNN that attempts to
remove low-content model data while maintaining nearly the
same accuracy.

To better understand how each classifier does relative to

Figure 5: Comparison of DBN and LR detection accuracy
(F1 score) with single Patient Testing. DBN shows some, but
no significant improvement for single patient training and
testing

one another experimental values were assigned to each vari-
able. These values are shown in parenthesis next to each
variable. The last two columns show the relative memory and
computation requirements, respectively, for each classifier
relative to logistic regression, which did the best for both
requirements. KNN did by far the worst for both cases. This
makes sense since KNN requires storing all of the unique
training data and labels. For the experimental values, KNN
required 10,000x more memory and over 1,000x more com-
putations than logistic regression. For CNN, experimental
results showed a reduction of roughly 75% relative to KNN
(αCNN = 0.25), with only a 5% hit in accuracy. Therefore,
it makes sense that CNN requires 2,500x more memory and
roughly 275x more computations than LR. SVM did the sec-
ond best requiring roughly 500x more memory and almost
equal amount of computation compared to LR.

Part 2: Simple Feature to DBN and Classifier
Comparison
Since Logistic Regression performs very well both in terms
of accuracy and complexity requirements, we used it as the
classifier for DBN analysis. Similar to Part 1, we performed
the test on single patient training, as well as leaving one
patient out for training.

F1 and accuracy measurements Classification using the
same patient as the training and testing corpus is generally
an easier task for machines to learn on, so the differences
between the deep belief network and the logistic regression
are not as great on single patient training as the next study of
leave one out training. The deep belief network algorithm was
very effective at detection, with two perfect F1 measures, and
only one F1 measure below 0.9. These same tests were also
run against the same implementation of logistic regression
that is used in the output layer of the deep belief network,
with F1 comparisons shown in Figure 5.

In the second study similar to Part 1, the patient data was
left out for training and was used for testing only. F1 mea-
sures were lower in this study as was expected, because the
test set was similar, but not identical to the sets that the model
was trained with nor validated with. In this second study, 1
patient was above 0.9, 4 patients were between 0.8 and 0.9,
and only 3 patients were below 0.8. Compared against the
same implementation of logistic regression that takes the out-
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Classifier Memory Requirement Computation Requirement Memory Req. Rela-
tive to LR

Computation Req.
Relative to LR

SF 0 19W + 16αKW + 10 - -
KNN TR(CM + 1) 3T (CM +N) + (N + 1) + SF 10,000x 1,096.5x
CNN αCNNTR(CM + 1) 3αCNNT (CM +N) + (N + 1) + SF 2,500x 274.8x
SVM αSVMTR(CM + 2) 2CM + αSVMT + 5 + SF 502.5x 1.086x
LR R(CM + 2) 2CM + 5 + SF 1x 1x

Table 1: Comparison of memory and computational complexity requirements for simple feature extraction (SF), KNN, CNN,
SVM and LR classifiers. W = Window Size (256), T = # Training Windows (10,000), C = # Channels (23), M = # Features /
Channel (9), R = Bit Resolution (32), N = # Neighbors (5), L = # DBN layers (2), αK = Peak Ratio (0.125), αCNN = CNN
Reduction Ratio (0.25), and αSVM = SVM Support Vector Ratio (0.05).
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Figure 6: Comparison of DBN and LR detection accuracy (F1
score) with multi (leave one out) patient testing. The Deep
Belief Network shows significant improvements over logistic
regression in many of the cases.

put layer of the network as input run by itself, the results are
shown in Figure 6. In this harder machine learning problem
of leave one out patient training, the deep belief network
shows much improved performance over the logistic regres-
sion algorithm. Although the improvement is not better in all
nine patients, in many of them there is a very significant im-
provement in classification F1 measure from the deep belief
network.

Computational and memory complexity requirements
As discussed previously, complexity of the system must also
be examined. Adding a DBN stage into the system will in-
crease both the memory and computation. In terms of storage,
a DBN stage will add approximately LR(CM)2 more bits
than just logistic regression, where L is the number of lay-
ers. This is assuming that the average number of nodes in
a layer is equal to the number of input features. For our
experiments, this required 413x more memory than LR. In
terms of complexity, the DBN stage will add approximately
LCM(2CM+1). Again, from our experiments this required
30x more computations than LR alone.

Conclusion
In this paper, the use of a variety of representations and ma-
chine learning algorithms was applied to seizure detection in
high resolution and multi-channel EEG data. Classification
accuracy, computational complexity and memory require-
ments are explored with the view of processing large patient
data requirements. Among classifiers logistic regression per-
forms best in terms of complexity and accuracy for the major-

ity of tests. Also, seizure detection in the studies where the
same patient was used in the training, validation, and testing
sets was very successful on all patients. Although these are
good numbers, it may not always be feasible to have hours
of trained data about a patient to use as a model. The more
realistic clinical study is the study, where the patients tests
were done without any previous knowledge of the patient
being tested on. Dealing in the domain of using models of
other patients to represent a different patient being tested
upon (as was the case in the leave one out training and in
real situations), deep belief networks often outperformed the
logistic regression algorithm using the same feature set.
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