
Convolutional Architecture Exploration for
Action Recognition and Image Classification

JT Turner∗1,2, David Aha1, Leslie Smith1, and Kalyan Moy Gupta2

2Knexus Research Corporation;
174 Waterfront Street Suite 310; National Harbor, MD 20745
1Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375

Abstract

Convolutional Architecture for Fast Feature Encoding (CAFFE) [11] is a soft-
ware package for the training, classifying, and feature extraction of images. The
UCF Sports Action dataset is a widely used machine learning dataset that has 200
videos taken in 720x480 resolution of 9 different sporting activities: diving, golf,
swinging, kicking, lifting, horseback riding, running, skateboarding, swinging (vari-
ous gymnastics), and walking. In this report we report on a caffe feature extraction
pipeline of images taken from the videos of the UCF Sports Action dataset. A sim-
ilar test was performed on overfeat, and results were inferior to caffe. This study is
intended to explore the architecture and hyper parameters needed for effective static
analysis of action in videos and classification over a variety of image datasets.

I Introduction

Traditional action recognition focuses on temporal differences between frames in a video[3],
and the movement of features extracted with various algorithms such as SIFT[14] or
HOG[4]. By tracking the motion of human and objects in the movie between frames,
the fully connected layers of the network can make predictions about what actions are
being performed (i.e. a hand moving quickly into a white ball in a sports dataset would
probably be spiking the volleyball). In an attempt to gain further knowledge of the
UCF sports database, as well as caffe, we classified images not based upon temporal
differences but instead by viewing single frame images. The strengths and weaknesses
to this approach are shown in the results section.

A large factor in the success or failure of any deep neural network is the proper
architecture set with the proper hyper parameters values [2][1]. This is especially true
with convolutional neural networks which depend upon the architecture to detect edges
and objects in the same way the human visual cortex does. Using well known image
datasets such as VOC, Caltech, Stanford dogs, etc. we tested classification of images in
a more traditional way and explored the tricks of the trade in architecture and hyper
parameters.

I.1 UCF Sports Action Dataset

The UCF Sports dataset[15] contains 200 videos of different sporting activities, and
provides both the .mpeg video, and .jpg images taken at uniform frames in the video.
We divided the video image data into training and testing splits by randomization of

∗Student Contractor at Naval Research Laboratory from Cognitive Robotics and Learning lab at
University of Maryland, Baltimore County

1

ar
X

iv
:1

51
2.

07
50

2v
1 

 [
cs

.C
V

] 
 2

3 
D

ec
 2

01
5



video numbers, to make sure that all of the image data from a specific video was in the
same set (so we would not train on half a video and test on the other half).

Table 1: UCF Sports Action Dataset
Sport/Activity Training Videos # Testing Videos

Diving 13 3
Golf Swinging 21 4
Horseback Riding 11 3
Kicking 21 4
Lifting 12 3
Running 12 3
Skateboarding 12 3
Swinging (Gymnastics) 28 7
Walking 17 5

I.2 Additional Datasets

The later part of this paper focuses more on single image classification, which identifies
objects in the image (such as a soccer ball or dumbbell) instead of recognition of an
action from the video(such as kicking or weightlifting). The datasets used are:
• Caltech101[6]- Created in 2003, containing 101 different classes of objects com-

posing a 9,146 image corpus. Examples of classes: accordion, chandelier, hedgehog.
• Caltech200[18]- Created in 2011, containing 200 different classes of bird species

composing a 11,788 image corpus. Examples of classes: crested auklet, cardinal,
yellow warbler.
• Caltech256[7]- Created in 2007, containing 256 different classes of everyday ob-

jects composing a 30,607 image corpus. Similar to Caltech101 but more difficult.
Example objects include: AK47, Calculator, Sushi.
• Olivetti Faces- Created in 1992, containing 40 different faces composing a 400

image corpus. Faces in images reflect a variety of persons: Male and females, young
and old, with and without glasses. Racial identification hard to tell from gray scale
images. This dataset was provided by the AT& T Laboratories at Cambridge.
• Stanford dogs [12]- Created in 2011, containing 120 different breeds of dogs

composing a 20,580 image corpus. Example dogs include: basset hound, rottweiler,
Siberian husky.
• PASCAL VOC2012[5]- Created in 2012, containing 20 different classes compos-

ing a 11,540 image corpus. Not the entire image corpus is used since some of the
images contain more than one class. Example classes include: airplane, bird, car.

II Recognition Architecture

Our action recognition pipeline has two algorithms that are used for classification: con-
volutional neural networks, and support vector machines. The convolutional neural
network is an 8 layer network that was trained on the Imagenet dataset[16] until perfor-
mance surpassed Krizhevsky’s ConvNet[13].

The more typical architecture for classification with an convolutional neural network
such as Caffe is to include an ”accuracy” layer. Input to the accuracy layer is the output
from a fully connected layer and the test or validation data labels (accuracy layers can
follow any or all fully connected layers). Caffe runs the test data through the networks

2



at specified iterations and prints the accuracy based on the number of times the network
predicted the correct labels for the test data. Future work includes comparing the two
algorithm architecture used in this study with the accuracies computed directly by the
network.

II.1 Convolutional Neural Network Architecture

The layers of the stock imagenet CNN model are as follows:

Table 2: Pre-trained Imagenet 23 layer convolutional architecture
Layer Type Number Kernels # Kernel Size Stride

1 Convolutional 96 11× 11 4× 4
2 Rectified Linear Unit N/A N/A N/A
3 Max Pooling N/A 3× 3 2× 2
4 Local Response Normalization N/A 5× 5 1× 1
5 Convolutional 256 5× 5 1× 1
6 Rectified Linear Unit N/A N/A N/A
7 Max Pooling N/A 3× 3 2× 2
8 Local Response Normalization N/A 5× 5 1× 1
9 Convolutional 384 3× 3 1× 1
10 Rectified Linear Unit N/A N/A N/A
11 Convolutional 384 5× 5 1× 1
12 Rectified Linear Unit N/A N/A N/A
13 Convolutional 256 3× 3 1× 1
14 Rectified Linear Unit N/A N/A N/A
15 Max Pooling N/A 3× 3 2× 2
16 Fully Connected 4096 N/A N/A
17 Rectified Linear Unit N/A N/A N/A
18 Dropout (.5) N/A N/A N/A
19 Fully Connected 4096 N/A N/A
20 Rectified Linear Unit N/A N/A N/A
21 Dropout (.5) N/A N/A N/A
22 Fully Connected 1000 N/A N/A
23 Softmax N/A N/A N/A

A brief review of the types of layers from Table 2:

• Convolutional- Standard n dimensional image convolution using a randomly ini-
tialzed kernel that is trained through stocastic gradient descent back propagation.
• Rectified Linear Unit- Non linearity applied to the output of convolution, de-

fined as:

f(x) =

{
0 : x ≤ 0
x : x > 0

• Max Pooling- This takes all of the signals from the kernel (all are 3 × 3 in our
case) and outputs only the maximum value
• Local Response Normalization- Aids convolutional neural networks in learning

[13] by normalizing over local regions. Given the input activity of a neuron as aix,y

3



we define the response normalized output as follows:

bix,y =
aix,y(

k + α
∑min(N−1,i+n

2
)

j=max(0,i−n
2
) (ajx,y)2

)β
where k, n, α, β are hyper parameters determined by using the validation set.
• Fully Connected- Standard fully connected perceptron type feed forward layer.
• Dropout- A 50% dropout rate is employed to discourage the coadaption of feature

detectors, as suggested in [10]. This randomly zeroes out half of the values.
• Softmax- Softmax function used for standard logistic regression and gradient

descent in assigning class label.
To extract features and not just probabilities, we obtained the feature vector from

the fully connected layers at levels 16 and 19 in Table 2, which output a feature vector
of size 8192 floating point numbers.

II.2 Support Vector Machine

A basic SVM from the weka toolkit[8] was used for classification. SVM Parameters are
those of John Platt’s implementation of Polynomial Kernel SVM [8], exponent = 2.

III UCF Sports Action Dataset

This section presents results from using the Imagenet’s deep neural network architecture
on images from the UCF Sports Action dataset. All the results here are from processing
individual frames from the videos, not blocks of frames.

III.1 CAFFE with stock imagenet model

The following is the output provided by running weka. Note that there are a large scalar
multiple more examples in this table because we are classifying individual frames and
not videos; a single video can contain over 200 frames (videos were taken at 10 frames
per second). Table 3 contains a confusion matrix, where the columns are the image
classification and rows are the true labels.

Table 3: Confusion Matrix
LFT DIV SKT KCK GYM GLF WLK RUN HRB

LFT 127 0 0 0 0 0 0 0 0

DIV 0 165 0 0 0 0 0 0 0

SKT 0 0 161 0 0 0 35 14 0

KCK 0 0 0 68 0 0 3 20 0

GYM 0 63 0 0 485 0 0 0 0

GLF 0 0 0 60 0 120 60 0 0

WLK 0 0 0 184 0 0 440 3 0

RUN 0 0 0 132 0 0 63 0 0

HRB 0 0 0 1 0 0 30 0 149

III.2 Preliminary Analysis

A Google search for performance on the UCF sports action dataset shows that in 2013
the best performance was between 90-96% accuracy in recognition[9], depending on what

4



sort of testing split was used. The work given in [9] used high dimensional kernels for
SVM to classify actions based on motion, which relies on video knowledge as opposed to
imagery, which was the work of this study. The out of the box Caffe performance was
71%, however a combination of some or all of the following techniques should improve
the performance of the CNN. However, none of the results in this report indicate any
significant improvement.

• Train the convolutional neural network specifically on the same dataset to be
tested. Right now the convolutional model was trained on the Imagenet dataset
which is much larger and contains many things that would not be seen while trying
to recognize sports actions.
• Use a single classification scheme to classify the video’s action. If a video shows

28 frames of kicking, and 20 of running (as one of the movies did), than we would
classify this video as kicking. This would make accuracy on that video 1/1 (100%)
as opposed to 28/48 (58.3%).
• Leverage temporal features. A time series of how the features detected in the image

evolve as the video progresses would contain useful information. This would better
capture the action being performed in the video. One of the clips of running was
classified as golf in all frames. Watching the video we realized that it was taken
after a golfer had just made a difficult put, and he was running around the green
fist pumping with his golf club. The golf club led the static image analyzer to
think that it was a golf action, while if we saw the action of rapid leg movement
than we would know that he was running.
• Change the Network Architecture. The architecture that we use was trained on

the gargantuan Imagenet; models take up around 275 MB of hard disk. This is
a necessary size for performance on the Imagenet dataset with over 1,000 classes;
however for the smaller UCF Sports action dataset this network maybe too large.
While a larger network would not hurt the performance in theory, it may hurt
performance by limiting how many epochs can be tested on. The network should
be large enough to express everything it needs to in the dataset but no larger.

This preliminary analysis was performed to gain a greater understanding of feature
extractions with caffe and of the UCF sports action database.

III.3 Overfeat with stock Imagenet model

Overfeat[17] was the first convolutional neural network that we tested because of the
simplicity of setting up Overfeat to run on the CPU. The source code for the CPU
version of Overfeat is publicly available, as well as binaries for the CPU and NVIDIA-
GPU versions of Overfeat. Unfortunately the GPU binary was unstable and running
this executable caused segmentation faults after around 3 images.

We recommend the usage of caffe not Overfeat for the following reasons:

• The GPU version of caffe is working while GPU version of Overfeat is not. The
GPU version of caffe is an order of magnitude faster than the CPU version of
Overfeat.
• Accuracy of caffe on the above test was 71.96, while the Overfeat accuracy on the

same test was 53.01.
• Caffe models can be trained for your own datasets, while Overfeat alone cannot

be trained without first learning the companion implementations; lua and torch.

5



III.4 CAFFE with UCF Sports trained model

The first suggestion of the list in Section III.2 is to train the network on the same dataset
used in testing. This seems intuitive; that training the network to learn on everything
but only testing on a small subset is less preferable than to train the network on the
type of data used in the testing.

The network used in the experiments reported here is the same architecture used in
section II.1, with the exception that layer 22 has its size modified for the correct number
of outputs. The architecture of the neural network is illustrated in Table 2 while layer
22 is as follows:

Layer Type Number Kernels # Kernel Size Stride

22 Fully Connected 9 N/A N/A

We expect that if we were to train on this small subset and test on the same subset
performance should increase. However, the results shown in Table 4 shows a significant
reduction in performance.

Table 4: Custom model built for UCF sports action dataset
Training set Testing set Iterations # Accuracy

Imagenet UCF Sports Action 10,000,000 71.96
UCF Sports Action UCF Sports Action 10,000 54.43
UCF Sports Action UCF Sports Action 85,000 43.68

A possible reason the model trained on Imagenet actually outperformed the model
trained on the UCF sports action dataset could be the result of the reference model
being trained for a large amount of time with powerful GPU. This demonstrates the
importance of training the lower level weights to better extract information from the in-
put. Over-fitting may have been a reason why increasing the iterations by 75k decreased
performance. Even though the imagenet model was trained on 10,000,000 iterations,
imagenet is enormous, so it would be unlikely that the same image was seen more than
once or twice. If over-fitting was a culprint, then for some portion of the final 75,000
training iterations, the CNN was solely learning a random noise distribution unique to
the training set.

III.5 Testing Feature Vector Concatenation

Initially we assumed that a concatenation of the neuron activations of the 6th and 7th

fully connected layers would be the best. We soon realized that the 7th layer was very
sparse and often doesn’t contain useful information for classification. We put together a
script to do different concatenations of the feature levels. We used the imagenet trained
model caffe provided and tested combinations of layers.

6



Table 5: F16, F19, F22 feature vector concatenations
Feature Layers Layer Size Length J48 decision tree 3-NN Poly Kernel SVM

F16 4096 60.59 65.76 69.74
F19 4096 46.12 70.58 71.76
F22 1000 42.47 67.05 69.62

F16 ⊕ F19 8192 48.01 71.34 71.96
F16 ⊕ F22 5096 50.94 69.67 70.50
F19 ⊕ F22 5096 44.44 70.50 71.50

F16 ⊕ F19 ⊕ F22 9192 42.47 67.05 69.62

From Table 5 we learn the two following things:

1. Using a support vector machine is needed for accurate classification. We experi-
mented with J48 pruned decision trees to get a very fast solution but it was often
about 20% less accurate as a support vector machine. KNN3 was better than
decision trees, but once again didn’t measure up in accuracy.

2. Intermediate layers (F16 and F19) were more accurate than the final layer (F22).
This result is not what we expected because the final layer should encapsulate the
final classification. Perhaps it is caused by the F22 Imagenet layer being trained
for 1,000 class labels and the UCF dataset containing only 9 classes. In light of
this, it appears that the F22 layer is not going to be helpful.

III.6 Fine Tuning

A large portion of the experimentation on the UCF sports action dataset entailed mod-
ifying the architecture of the network. We left the first 5 convolutional layers (layers 1
-15 in Table 2) undisturbed in all of these experiments. In layers 1 - 15 there are an
enormous number of parameters that can be explored in the future; kernel size, number
of kernels, number of layers, pool size, pool stride, etc. Based on previous SVM results
with F16 concatenated with F19, this was one of the two featurization levels tested.
Also because we were fine tuning specifically for this data set, we tested the F22 layer
for accuracy.

The purpose of fine tuning is to use an already well established model (for example
the imagenet trained model), and replace the top layers to match the new problem. The
lower layers are unchanged. The theory behind this is then we will remove the dataset
specific classifiers from the model, but still retain the well honed low level featurization
that is universal to all images. We swept in size over three levels to experiment for the
best size: F16, F19, and F22.

In the F22 layer we tried 9 nodes (since there are 9 classes it is attempting to classify),
and 1000 nodes (this is the default F22 layer size of imagenet, but these 1000 nodes need
to be trained to discriminate sports action characteristics). The results with a variable
size F22 layer are shown below in Table 6. All of the layer sizes not listed (c1 through
ds15, fc16, relu17, d18, fc19, relu20, d21) were unchanged from Table 2. Unless stated
otherwise, the learning rate alpha was set at .0001 (learning sometimes diverged when
set higher), and 20,000 iterations were run.

7



Table 6: Fine tuning of F22 layer
Fine Tuning Level F16 ⊕ F19 feature accuracy F22 feature accuracy

F22 = 9 65.46 66.01
F22 = 500 69.36 62.56

F22 = 1000 69.36 62.56

F22 = 2000 60.34 58.79

F22 = 1000† 72.20 58.52

† = 1,000,000 iterations.

In the first two experiments we ran (F22 = 9, F22 = 1000), F22 was the most telling
feature vector for the class label. We split the difference between the two for the first
follow up experiment (approximately at F22 = 500), and doubled the previous best size
for a second follow up experiment (F22 = 2000), and was surprised that in both of these
tests the F16⊕F19 feature layer was so much more accurate than the F22 layer. We
took the most accurate configuration of the four trials (F22=1000 nodes), and ran them
for a long weekend for 1 million iterations. The F16⊕F19 concatenated layer had the
best performance of any of the other experiments and significantly better than the F22
layer.

In trying to increase accuracy further, we fine tuned the F16 and F19 layers (individ-
ually), instead of starting from the default weights of the imagenet model. Our method
for choosing parameters is a by examining different layer sizes and moving towards the
best result. We can use this best result as our new midpoint, and split into evenly spaced
layer levels again.

When we did our F19 experiment, we started with sizes 2048, 4096, and 8192. Since
2048 did poorly, we put our new midpoint between the middle of 4096 and 8192 at a
layer size of 6144. We created evenly spaced tests at 5120 and 7168. This method can
be used to find a reasonably good guess for the best parameters quickly. Results of fine
tuning on the F19 layer can be found in table 7. The mean accuracy, as well as the
length of the feature vector are given for each fine tuning level.

Table 7: Fine tuning of F19 feature vector
Fine-tune level F16 ⊕ F19 Feature Vector F19 Feature Vector F22 Feature Vector

Mean% Vector Length Mean% Length Mean% Length

F19 = 2048 64.46 6144 65.34 2048 63.83 1000
F19 = 4096 70.71 8192 70.79 4096 70.58 1000

F19 = 8192 70.00 12288 70.16 8192 67.98 1000
F19 = 6144 72.30 10240 72.22 6144 72.30 1000
F19 = 5120 70.21 9216 69.95 5120 68.19 1000

F19 = 7168 69.29 11264 69.16 71.68 70.42 1000

The best results were obtained with F19 tuning were a layer larger than the imagenet
model, 6144 nodes. Tuning the F19 layer in this way was able to produce a result superior
to the imagenet model by .34%.

The F16 layer was fine-tuned individually and the results are shown in table 8.
We initially used 3 layer sizes chosen with the same method above. Due to memory
constraints of the GPU, we was unable to expand on the F16 layer upwards past F16 =
8192, and the CPU implementation was far too slow to attempt.

8



Table 8: Fine tuning of F16 feature vector
Fine-tuning level F16 ⊕ F19 Feature Vector F16 Feature Vector F22 Feature Vector

Mean% Length Mean% Length Mean% Length

F16 = 2048 67.01 6144 66.51 2048 65.38 1000
F16 = 4096 69.37 8192 68.91 4096 68.44 1000

F16 = 8192 70.25 12288 68.36 8192 73.23 1000

The best results on the UCF sports action database was obtained with F16 twice the
size of the imagenet model, 8192 nodes. Because of time and memory constraints we was
unable to increase the size, but it may prove to be more expressive. Future experiments
could be run with a more powerful graphics card.

Two final experiments were run on the UCF sports action dataset in an attempt to
get the best performance. First we trained the imagenet model with fine tuning. In the
fine tuning all of the layers past the convolutional layers were set to their default values,
then we combined the best parameters from the individual fine tuning experiments above.
The results, which were disappointingly low, are listed in table 9. Using the optimized
F6 and F7 layer at the same time were not possible with with current GPU memory.
This is another future experiment that could be run with a larger GPU.

Table 9: Imagenet finetuning (F16=4096, F19=4096, F22=1000)
F16 ⊕ F19 F16 F19 F22

61.69 59.55 63.33 64.12

Table 10: Optimized Architecture finetuning (F16=4096, F19=6144, F22=1000)
F16 ⊕ F19 F16 F19 F22

63.70 63.37 61.69 62.78

Overfitting was a concern in both of these experiments. Part of the CAFFE software
allows the printing out of loss (from cross entropy) at intervals of your choosing and the
loss usually does not reach zero. However, we found it reached zero quickly in both of
these architectures, which is indicative of over-fitting. Further experimentation should
explore why this happened, and more importantly how to fix it. We hypothesize that
varying the percentages of dropout levels in the 6th and 7th fully connected levels would
enhance performance.

IV Fine Grained Classification

In addition to the UCF sports action dataset, six additional datasets were used as
described above in section I.2. Of the six, three of them can be considered fine grained
sets (Olivetti faces, Caltech-UCSB birds, and Stanford dogs), and the other three contain
many more generic classes (Caltech101, Caltech256, VOC2012). We mean by ”fine
grained” that the the classes are subsets of classes of what we would usually consider a
class in itself. That is, instead of a dog class, classes in Stanford Dogs set are types of
dogs, such as Siberian Husky, or Yellow Labrador retriever. In Table 11, the first two
columns are information about the dataset and the next three are using the pretrained
imagenet model on F16, F19, and F22 featurization levels. The next column is the fine

9



tuned model with the same layer sizes as imagenet for all layers except for F22. In the
final column the model is fine tuned with only layers up to F16. The F16 layer output
size is set at a constant (5000), because I hypothesized that a larger output size would
be necessary if it were the only non-convolutional layer. The results are displayed in the
table below. Due to the size of these datasets, SVMlight was used as opposed to weka
for SVM classification. Of the datasets appearing in table 11, the number classes (top
to bottom) are: 101, 200, 256, 40, 200, 20; the number of F8 output nodes are: 101, 200,
256, 40, 200, 200; and the number of F6 output nodes are: 5000, 5000, 5000, 5000, 5000,
5000. These were left out of the table due to the relative unimportance of the content,
and the size and readability constraints of the table.

Table 11: Fine Grained Classification. NET = Imagenet model, FT = Fine tuned model
Dataset Size (GB) NET (F16) NET (F19) NET (F22) FT (F16) FT (F16 out)

Caltech-101 .157 .7240 .5388 .5371 .6805 .6520

CUB-200 Birds .694 .3133 .2403 .1562 .2417 .1653

Caltech-256 1.2 .5587 .3842 .3772 .5587 .2659

Olivetti Faces .053 .9917 .4917 .4833 1.000 .8000

Stanford Dogs .820 .4696 .3677 .2342 .2277 .0599

VOC 2012 1.4 .5872 .5204 .5459 .4628 .2516

Three comparisons were run on the datasets: feature level accuracy comparisons,
imagenet vs. finetuning comparisons, and full model vs. truncated model comparisons.

In the feature level accuracy comparison, we first wanted to compare the expressive-
ness between the three fully connected layers. The first three columns of results confirm
what was seen in the UCF sports action datasets; that F16 is the most expressive layer
of the fully connected layers. Although above we had found that the most accurate
feature vector was the F16 vector concatenated with the F19 vector, here instead we
used the F16 vector by itself to aid in the comparison to the level that does not have an
F19 layer.

The second comparison was between the highly trained but not specialized imagenet
model and the minimally trained yet highly specialized models for the specific datasets.
We expected the specialized models to perform better on the three specialized datasets
(birds, faces, and dogs) because of their specificity. Out of the six datasets, 4 of them
(Caltech101, Caltech200, Stanford dogs, and VOC2012) had better performance on the
imagenet dataset, 1 of them (Caltech256) did equally well on both the imagenet and
finetuning set, and 1 of them (Olivetti faces) did better on finetuning. The Olivetti
dataset got 100% accuracy when fine tuned, which is somewhat suspicious, especially
since it is also by far the smallest dataset.

The third comparison was to determine whether fully trained 23 layer models 16th

fully connected layer would be more accurate than truncated 16 layer models. Intuitively
it would make sense that it does, but the non linearities in the 16th and 19th layers may
add to the expressiveness of the model. Because these non linearities exist, a multilayer
perceptron system may be able to express more than a single layered perceptron. For this
reason we hypothesized that datasets with less classes (VOC has 20 classes, Olivetti with
40 classes, Caltech101 with 101 classes) to do better with a single layer output succeeding
the 5 convolutional layers. All 6 out of 6 datasets did better on the full size model as
opposed to the truncated model even though the F16 layer was the features extracted in
both models. This suggests that the layers of nonlinearity helps the expressiveness even
if the only way that the F16 layer benefits from the nonlinearity is backpropagation.

10



V Conclusion and Discussion

Though this is a promising start, due to time and resource constraints it is by no means a
complete study of evaluating convolutional neural networks for use. The current graphics
processing units be used (GTX 480 on the cluster, and GT 730M on the laptop) are
inferior to state of the art graphics processing units such as the NVIDIA Tesla 40k,
which materially limited this investigation. Not only does training take longer, less
meaningful experiments can be done in the allotted time and the performance was worse.
In addition, there was not enough GPU memory to execute some of the models described
in this study.

In the Caltech256 dataset, there are over 20,000 images in the training set, so not
all of the images are even seen in training. This was done to make sure that the tests
could be completed in a reasonable time. In a real world situation the system would see
every image many times. The only image set that did better on fine tuning had 280 total
training images, and at 20,000 iterations, so each training image was seen to be trained
on over 71 times. The image set that had the largest decrease in performance between
the imagenet model and the fine tuned model was the Stanford Dogs dataset. There was
13,680 images in the training corpus, so the average image was seen less than 2 times.
With more computational power we would surely be able to increase the performance.

The outcome of the experiments that were run were promising, and demonstrate
the power of classification in convolutional neural networks. We recommend that con-
volutional neural networks be pursued further in computer vision tasks, based on their
accuracy and ways that their training time can be minimized.

This work represents an initial investigation and future work includes leveraging time
series of features and voting for the majority label of videos.

References

[1] Ken Chatfield et al. “Return of the devil in the details: Delving deep into convo-
lutional nets”. In: arXiv preprint arXiv:1405.3531 (2014).

[2] Ken Chatfield et al. “The devil is in the details: an evaluation of recent feature
encoding methods.” In:

[3] Guangchun Cheng et al. “Advances in Human Action Recognition: A Survey”. In:
arXiv preprint arXiv:1501.05964 (2015).

[4] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-
tection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[5] Mark Everingham et al. “The pascal visual object classes challenge: A retrospec-
tive”. In: International Journal of Computer Vision 111.1 (), pp. 98–136.

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories”. In: Computer Vision and Image Understanding 106.1 (2007), pp. 59–
70.

[7] Gregory Griffin, Alex Holub, and Pietro Perona. “Caltech-256 object category
dataset”. In: (2007).

[8] Mark Hall et al. “The WEKA data mining software: an update”. In: ACM SIGKDD
explorations newsletter 11.1 (2009), pp. 10–18.

11



[9] Mehrtash T Harandi et al. “Kernel analysis on Grassmann manifolds for action
recognition”. In: Pattern Recognition Letters 34.15 (2013), pp. 1906–1915.

[10] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation
of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[11] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”.
In: Proceedings of the ACM International Conference on Multimedia. ACM. 2014,
pp. 675–678.

[12] Aditya Khosla et al. “Novel dataset for fine-grained image categorization: Stanford
dogs”. In:

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems. 2012, pp. 1097–1105.

[14] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International journal of computer vision 60.2 (2004), pp. 91–110.

[15] Kai Ni et al. “Epitomic location recognition”. In: Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[16] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In:
International Journal of Computer Vision (), pp. 1–42.

[17] Pierre Sermanet et al. “Overfeat: Integrated recognition, localization and detection
using convolutional networks”. In: arXiv preprint arXiv:1312.6229 (2013).

[18] Peter Welinder et al. “Caltech-UCSD birds 200”. In: (2010).

12


	I Introduction
	I.1 UCF Sports Action Dataset
	I.2 Additional Datasets

	II Recognition Architecture
	II.1 Convolutional Neural Network Architecture
	II.2 Support Vector Machine

	III UCF Sports Action Dataset
	III.1 CAFFE with stock imagenet model
	III.2 Preliminary Analysis
	III.3 Overfeat with stock Imagenet model
	III.4 CAFFE with UCF Sports trained model
	III.5 Testing Feature Vector Concatenation
	III.6 Fine Tuning

	IV Fine Grained Classification
	V Conclusion and Discussion

